ترغب بنشر مسار تعليمي؟ اضغط هنا

Cu-Doped KCl folded and unfolded band structure and optical properties studied by DFT calculations

257   0   0.0 ( 0 )
 نشر من قبل Jose Luis Cabellos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We computed the optical properties and the folded and unfolded band structure of Cu-doped KCl crystals. The calculations use the plane-wave pseudo-potential approach implemented in the ABINIT electronic structure package within the first-principles density-functional theory framework. Cu substitution into pristine KCl crystals requires calculation by the supercell (SC) method from a theoretical perspective. This procedure shrinks the Brillouin zone, resulting in a folded band structure that is difficult to interpret. To solve this problem and gain insight into the effect of cuprous ion (Cu+) on electronic properties; We unfolded the band structure of SC KCl:Cu to directly compare with the band structure of the primitive cell (PC) of pristine KCl. To understand the effect of Cu substitution on optical absorption, we calculated the imaginary part of the dielectric function of KCl:Cu through a sum-over-states formalism and broke it down into different band contributions by partially making an iterated cumulative sum (ICS) of selected valence and conduction bands. As a result, we identified those interband transitions that give rise to the absorption peaks due to the Cu ion. These transitions include valence and conduction bands formed by the Cu-3d and Cu-4s electronic states. To investigate the effects of doping position, we consider different doping positions, where the Cu dopant occupies all the substitutional sites replacing host K cations. Our results indicate that the doping positions effects give rise to two octahedral shapes in the geometric structure. The distorted-twisted octahedral square bipyramidal geometric-shape induces a difference in the crystal field splitting energy compared to that of the perfect octahedral square bipyramidal geometric-shape.

قيم البحث

اقرأ أيضاً

We present an angle-resolved photoemission spectroscopy study of the electronic structure of SnTe, and compare the experimental results to ab initio band structure calculations as well as a simplified tight-binding model of the p-bands. Our study rev eals the conjectured complex Fermi surface structure near the L-points showing topological changes in the bands from disconnected pockets, to open tubes, and then to cuboids as the binding energy increases, resolving lingering issues about the electronic structure. The chemical potential at the crystal surface is found to be 0.5eV below the gap, corresponding to a carrier density of p =1.14x10^{21} cm^{-3} or 7.2x10^{-2} holes per unit cell. At a temperature below the cubic-rhombohedral structural transition a small shift in spectral energy of the valance band is found, in agreement with model predictions.
Optical properties of ZnMnO layers grown at low temperature by Atomic Layer Deposition and Metalorganic Vapor Phase Epitaxy are discussed and compared to results obtained for ZnMnS samples. Present results suggest a double valence of Mn ions in ZnO l attice. Strong absorption, with onset at about 2.1 eV, is tentatively related to Mn 2+ to 3+ photoionization. Mechanism of emission deactivation in ZnMnO is discussed and is explained by the processes following the assumed Mn 2+ to 3+ recharging.
Resonant photoemission spectroscopy has been used to investigate the character of Fe 3d states in FeAl alloy. Fe 3d states have two different character, first is of itinerant nature located very close to the Fermi level, and second, is of less itiner ant (relatively localized character), located beyond 2 eV below the Fermi level. These distinct states are clearly distinguishable in the resonant photoemission data. Comparison between the results obtained from experiments and first principle based electronic structure calculation show that the origin of the itinerant character of the Fe 3d states is due to the ordered B2 structure, whereas the relatively less itinerant (localized) Fe 3d states are from the disorders present in the sample. The exchange splitting of the Fe 3s core level peak confirms the presence of local moment in this system. It is found that the itinerant electrons arise due to the hybridization between Fe 3d and Al 3s-3p states. Presence of hybridization is observed as a shift in the Al 2p core-level spectra as well as in the X-ray near edge absorption spectra towards lower binding energy. Our photoemission results are thus explained by the co-existence of ordered and disordered phases in the system.
Accurate computational predictions of band gaps are of practical importance to the modeling and development of semiconductor technologies, such as (opto)electronic devices and photoelectrochemical cells. Among available electronic-structure methods, density-functional theory (DFT) with the Hubbard U correction (DFT+U) applied to band edge states is a computationally tractable approach to improve the accuracy of band gap predictions beyond that of DFT calculations based on (semi)local functionals. At variance with DFT approximations, which are not intended to describe optical band gaps and other excited-state properties, DFT+U can be interpreted as an approximate spectral-potential method when U is determined by imposing the piecewise linearity of the total energy with respect to electronic occupations in the Hubbard manifold (thus removing self-interaction errors in this subspace), thereby providing a (heuristic) justification for using DFT+U to predict band gaps. However, it is still frequent in the literature to determine the Hubbard U parameters semiempirically by tuning their values to reproduce experimental band gaps, which ultimately alters the description of other total-energy characteristics. Here, we present an extensive assessment of DFT+U band gaps computed using self-consistent ab initio U parameters obtained from density-functional perturbation theory to impose the aforementioned piecewise linearity of the total energy. The study is carried out on 20 compounds containing transition-metal or p-block (group III-IV) elements, including oxides, nitrides, sulfides, oxynitrides, and oxysulfides...
The structure-property relation of nanostructured Al-doped ZnO thin films has been investigated in detail through a systematic variation of structure and morphology, with particular emphasis on how they affect optical and electrical properties. A var iety of structures, ranging from compact polycristalline films to mesoporous, hierarchically organized cluster assemblies, are grown by Pulsed Laser Deposition at room temperature at different oxygen pressures. We investigate the dependence of functional properties on structure and morphology and show how the correlation between electrical and optical properties can be studied to evaluate energy gap, conduction band effective mass and transport mechanisms. Understanding these properties opens the way for specific applications in photovoltaic devices, where optimized combinations of conductivity, transparency and light scattering are required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا