ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning-augmented count-min sketches via Bayesian nonparametrics

116   0   0.0 ( 0 )
 نشر من قبل Stefano Favaro
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The count-min sketch (CMS) is a time and memory efficient randomized data structure that provides estimates of tokens frequencies in a data stream, i.e. point queries, based on random hashed data. Learning-augmented CMSs improve the CMS by learning models that allow to better exploit data properties. In this paper, we focus on the learning-augmented CMS of Cai, Mitzenmacher and Adams (textit{NeurIPS} 2018), which relies on Bayesian nonparametric (BNP) modeling of a data stream via Dirichlet process (DP) priors. This is referred to as the CMS-DP, and it leads to BNP estimates of a point query as posterior means of the point query given the hashed data. While BNPs is proved to be a powerful tool for developing robust learning-augmented CMSs, ideas and methods behind the CMS-DP are tailored to point queries under DP priors, and they can not be used for other priors or more general queries. In this paper, we present an alternative, and more flexible, derivation of the CMS-DP such that: i) it allows to make use of the Pitman-Yor process (PYP) prior, which is arguably the most popular generalization of the DP prior; ii) it can be readily applied to the more general problem of estimating range queries. This leads to develop a novel learning-augmented CMS under power-law data streams, referred to as the CMS-PYP, which relies on BNP modeling of the stream via PYP priors. Applications to synthetic and real data show that the CMS-PYP outperforms the CMS and the CMS-DP in the estimation of low-frequency tokens; this known to be a critical feature in natural language processing, where it is indeed common to encounter power-law data streams.



قيم البحث

اقرأ أيضاً

302 - Diane Oyen , Terran Lane 2013
Bayesian network structure learning algorithms with limited data are being used in domains such as systems biology and neuroscience to gain insight into the underlying processes that produce observed data. Learning reliable networks from limited data is difficult, therefore transfer learning can improve the robustness of learned networks by leveraging data from related tasks. Existing transfer learning algorithms for Bayesian network structure learning give a single maximum a posteriori estimate of network models. Yet, many other models may be equally likely, and so a more informative result is provided by Bayesian structure discovery. Bayesian structure discovery algorithms estimate posterior probabilities of structural features, such as edges. We present transfer learning for Bayesian structure discovery which allows us to explore the shared and unique structural features among related tasks. Efficient computation requires that our transfer learning objective factors into local calculations, which we prove is given by a broad class of transfer biases. Theoretically, we show the efficiency of our approach. Empirically, we show that compared to single task learning, transfer learning is better able to positively identify true edges. We apply the method to whole-brain neuroimaging data.
Much of the data being created on the web contains interactions between users and items. Stochastic blockmodels, and other methods for community detection and clustering of bipartite graphs, can infer latent user communities and latent item clusters from this interaction data. These methods, however, typically ignore the items contents and the information they provide about item clusters, despite the tendency of items in the same latent cluster to share commonalities in content. We introduce content-augmented stochastic blockmodels (CASB), which use item content together with user-item interaction data to enhance the user communities and item clusters learned. Comparisons to several state-of-the-art benchmark methods, on datasets arising from scientists interacting with scientific articles, show that content-augmented stochastic blockmodels provide highly accurate clusters with respect to metrics representative of the underlying community structure.
We introduce a novel framework for the estimation of the posterior distribution over the weights of a neural network, based on a new probabilistic interpretation of adaptive optimisation algorithms such as AdaGrad and Adam. We demonstrate the effecti veness of our Bayesian Adam method, Badam, by experimentally showing that the learnt uncertainties correctly relate to the weights predictive capabilities by weight pruning. We also demonstrate the quality of the derived uncertainty measures by comparing the performance of Badam to standard methods in a Thompson sampling setting for multi-armed bandits, where good uncertainty measures are required for an agent to balance exploration and exploitation.
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian Structural Inference (BSI) relies on a set of candidate unifilar HMM (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological epsilon-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be epsilon-machines, irrespective of estimated transition probabilities. Properties of epsilon-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSIs effectiveness in estimating a processs randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
121 - Ning Ning 2020
In this paper, we propose the multivariate quantile Bayesian structural time series (MQBSTS) model for the joint quantile time series forecast, which is the first such model for correlated multivariate time series to the authors best knowledge. The M QBSTS model also enables quantile based feature selection in its regression component where each time series has its own pool of contemporaneous external time series predictors, which is the first time that a fully data-driven quantile feature selection technique applicable to time series data to the authors best knowledge. Different from most machine learning algorithms, the MQBSTS model has very few hyper-parameters to tune, requires small datasets to train, converges fast, and is executable on ordinary personal computers. Extensive examinations on simulated data and empirical data confirmed that the MQBSTS model has superior performance in feature selection, parameter estimation, and forecast.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا