ﻻ يوجد ملخص باللغة العربية
In this paper, we propose the multivariate quantile Bayesian structural time series (MQBSTS) model for the joint quantile time series forecast, which is the first such model for correlated multivariate time series to the authors best knowledge. The MQBSTS model also enables quantile based feature selection in its regression component where each time series has its own pool of contemporaneous external time series predictors, which is the first time that a fully data-driven quantile feature selection technique applicable to time series data to the authors best knowledge. Different from most machine learning algorithms, the MQBSTS model has very few hyper-parameters to tune, requires small datasets to train, converges fast, and is executable on ordinary personal computers. Extensive examinations on simulated data and empirical data confirmed that the MQBSTS model has superior performance in feature selection, parameter estimation, and forecast.
This paper deals with inference and prediction for multiple correlated time series, where one has also the choice of using a candidate pool of contemporaneous predictors for each target series. Starting with a structural model for the time-series, Ba
Multivariate time series are routinely encountered in real-world applications, and in many cases, these time series are strongly correlated. In this paper, we present a deep learning structural time series model which can (i) handle correlated multiv
The multivariate Bayesian structural time series (MBSTS) model citep{qiu2018multivariate,Jammalamadaka2019Predicting} as a generalized version of many structural time series models, deals with inference and prediction for multiple correlated time ser
Complex data structures such as time series are increasingly present in modern data science problems. A fundamental question is whether two such time-series are statistically dependent. Many current approaches make parametric assumptions on the rando
Unsupervised learning seeks to uncover patterns in data. However, different kinds of noise may impede the discovery of useful substructure from real-world time-series data. In this work, we focus on mitigating the interference of left-censorship in t