ترغب بنشر مسار تعليمي؟ اضغط هنا

Fairness for Unobserved Characteristics: Insights from Technological Impacts on Queer Communities

64   0   0.0 ( 0 )
 نشر من قبل Kevin McKee
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Advances in algorithmic fairness have largely omitted sexual orientation and gender identity. We explore queer concerns in privacy, censorship, language, online safety, health, and employment to study the positive and negative effects of artificial intelligence on queer communities. These issues underscore the need for new directions in fairness research that take into account a multiplicity of considerations, from privacy preservation, context sensitivity and process fairness, to an awareness of sociotechnical impact and the increasingly important role of inclusive and participatory research processes. Most current approaches for algorithmic fairness assume that the target characteristics for fairness--frequently, race and legal gender--can be observed or recorded. Sexual orientation and gender identity are prototypical instances of unobserved characteristics, which are frequently missing, unknown or fundamentally unmeasurable. This paper highlights the importance of developing new approaches for algorithmic fairness that break away from the prevailing assumption of observed characteristics.


قيم البحث

اقرأ أيضاً

The notion of individual fairness requires that similar people receive similar treatment. However, this is hard to achieve in practice since it is difficult to specify the appropriate similarity metric. In this work, we attempt to learn such similari ty metric from human annotated data. We gather a new dataset of human judgments on a criminal recidivism prediction (COMPAS) task. By assuming the human supervision obeys the principle of individual fairness, we leverage prior work on metric learning, evaluate the performance of several metric learning methods on our dataset, and show that the learned metrics outperform the Euclidean and Precision metric under various criteria. We do not provide a way to directly learn a similarity metric satisfying the individual fairness, but to provide an empirical study on how to derive the similarity metric from human supervisors, then future work can use this as a tool to understand human supervision.
Recent interest in codifying fairness in Automated Decision Systems (ADS) has resulted in a wide range of formulations of what it means for an algorithmic system to be fair. Most of these propositions are inspired by, but inadequately grounded in, po litical philosophy scholarship. This paper aims to correct that deficit. We introduce a taxonomy of fairness ideals using doctrines of Equality of Opportunity (EOP) from political philosophy, clarifying their conceptions in philosophy and the proposed codification in fair machine learning. We arrange these fairness ideals onto an EOP spectrum, which serves as a useful frame to guide the design of a fair ADS in a given context. We use our fairness-as-EOP framework to re-interpret the impossibility results from a philosophical perspective, as the in-compatibility between different value systems, and demonstrate the utility of the framework with several real-world and hypothetical examples. Through our EOP-framework we hope to answer what it means for an ADS to be fair from a moral and political philosophy standpoint, and to pave the way for similar scholarship from ethics and legal experts.
Society increasingly relies on machine learning models for automated decision making. Yet, efficiency gains from automation have come paired with concern for algorithmic discrimination that can systematize inequality. Recent work has proposed optimal post-processing methods that randomize classification decisions for a fraction of individuals, in order to achieve fairness measures related to parity in errors and calibration. These methods, however, have raised concern due to the information inefficiency, intra-group unfairness, and Pareto sub-optimality they entail. The present work proposes an alternative active framework for fair classification, where, in deployment, a decision-maker adaptively acquires information according to the needs of different groups or individuals, towards balancing disparities in classification performance. We propose two such methods, where information collection is adapted to group- and individual-level needs respectively. We show on real-world datasets that these can achieve: 1) calibration and single error parity (e.g., equal opportunity); and 2) parity in both false positive and false negative rates (i.e., equal odds). Moreover, we show that by leveraging their additional degree of freedom, active approaches can substantially outperform randomization-based classifiers previously considered optimal, while avoiding limitations such as intra-group unfairness.
Bias in machine learning has manifested injustice in several areas, such as medicine, hiring, and criminal justice. In response, computer scientists have developed myriad definitions of fairness to correct this bias in fielded algorithms. While some definitions are based on established legal and ethical norms, others are largely mathematical. It is unclear whether the general public agrees with these fairness definitions, and perhaps more importantly, whether they understand these definitions. We take initial steps toward bridging this gap between ML researchers and the public, by addressing the question: does a lay audience understand a basic definition of ML fairness? We develop a metric to measure comprehension of three such definitions--demographic parity, equal opportunity, and equalized odds. We evaluate this metric using an online survey, and investigate the relationship between comprehension and sentiment, demographics, and the definition itself.
210 - Wen Huang , Yongkai Wu , Lu Zhang 2019
Fair machine learning is receiving an increasing attention in machine learning fields. Researchers in fair learning have developed correlation or association-based measures such as demographic disparity, mistreatment disparity, calibration, causal-ba sed measures such as total effect, direct and indirect discrimination, and counterfactual fairness, and fairness notions such as equality of opportunity and equal odds that consider both decisions in the training data and decisions made by predictive models. In this paper, we develop a new causal-based fairness notation, called equality of effort. Different from existing fairness notions which mainly focus on discovering the disparity of decisions between two groups of individuals, the proposed equality of effort notation helps answer questions like to what extend a legitimate variable should change to make a particular individual achieve a certain outcome level and addresses the concerns whether the efforts made to achieve the same outcome level for individuals from the protected group and that from the unprotected group are different. We develop algorithms for determining whether an individual or a group of individuals is discriminated in terms of equality of effort. We also develop an optimization-based method for removing discriminatory effects from the data if discrimination is detected. We conduct empirical evaluations to compare the equality of effort and existing fairness notion and show the effectiveness of our proposed algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا