ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Non-Expert Comprehension of Machine Learning Fairness Metrics

450   0   0.0 ( 0 )
 نشر من قبل Candice Schumann
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Bias in machine learning has manifested injustice in several areas, such as medicine, hiring, and criminal justice. In response, computer scientists have developed myriad definitions of fairness to correct this bias in fielded algorithms. While some definitions are based on established legal and ethical norms, others are largely mathematical. It is unclear whether the general public agrees with these fairness definitions, and perhaps more importantly, whether they understand these definitions. We take initial steps toward bridging this gap between ML researchers and the public, by addressing the question: does a lay audience understand a basic definition of ML fairness? We develop a metric to measure comprehension of three such definitions--demographic parity, equal opportunity, and equalized odds. We evaluate this metric using an online survey, and investigate the relationship between comprehension and sentiment, demographics, and the definition itself.

قيم البحث

اقرأ أيضاً

The notion of individual fairness requires that similar people receive similar treatment. However, this is hard to achieve in practice since it is difficult to specify the appropriate similarity metric. In this work, we attempt to learn such similari ty metric from human annotated data. We gather a new dataset of human judgments on a criminal recidivism prediction (COMPAS) task. By assuming the human supervision obeys the principle of individual fairness, we leverage prior work on metric learning, evaluate the performance of several metric learning methods on our dataset, and show that the learned metrics outperform the Euclidean and Precision metric under various criteria. We do not provide a way to directly learn a similarity metric satisfying the individual fairness, but to provide an empirical study on how to derive the similarity metric from human supervisors, then future work can use this as a tool to understand human supervision.
Machine Learning is proving invaluable across disciplines. However, its success is often limited by the quality and quantity of available data, while its adoption by the level of trust that models afford users. Human vs. machine performance is common ly compared empirically to decide whether a certain task should be performed by a computer or an expert. In reality, the optimal learning strategy may involve combining the complementary strengths of man and machine. Here we present Expert-Augmented Machine Learning (EAML), an automated method that guides the extraction of expert knowledge and its integration into machine-learned models. We use a large dataset of intensive care patient data to predict mortality and show that we can extract expert knowledge using an online platform, help reveal hidden confounders, improve generalizability on a different population and learn using less data. EAML presents a novel framework for high performance and dependable machine learning in critical applications.
Understanding and removing bias from the decisions made by machine learning models is essential to avoid discrimination against unprivileged groups. Despite recent progress in algorithmic fairness, there is still no clear answer as to which bias-miti gation approaches are most effective. Evaluation strategies are typically use-case specific, rely on data with unclear bias, and employ a fixed policy to convert model outputs to decision outcomes. To address these problems, we performed a systematic comparison of a number of popular fairness algorithms applicable to supervised classification. Our study is the most comprehensive of its kind. It utilizes three real and four synthetic datasets, and two different ways of converting model outputs to decisions. It considers fairness, predictive-performance, calibration quality, and speed of 28 different modelling pipelines, corresponding to both fairness-unaware and fairness-aware algorithms. We found that fairness-unaware algorithms typically fail to produce adequately fair models and that the simplest algorithms are not necessarily the fairest ones. We also found that fairness-aware algorithms can induce fairness without material drops in predictive power. Finally, we found that dataset idiosyncracies (e.g., degree of intrinsic unfairness, nature of correlations) do affect the performance of fairness-aware approaches. Our results allow the practitioner to narrow down the approach(es) they would like to adopt without having to know in advance their fairness requirements.
Algorithmic decision making process now affects many aspects of our lives. Standard tools for machine learning, such as classification and regression, are subject to the bias in data, and thus direct application of such off-the-shelf tools could lead to a specific group being unfairly discriminated. Removing sensitive attributes of data does not solve this problem because a textit{disparate impact} can arise when non-sensitive attributes and sensitive attributes are correlated. Here, we study a fair machine learning algorithm that avoids such a disparate impact when making a decision. Inspired by the two-stage least squares method that is widely used in the field of economics, we propose a two-stage algorithm that removes bias in the training data. The proposed algorithm is conceptually simple. Unlike most of existing fair algorithms that are designed for classification tasks, the proposed method is able to (i) deal with regression tasks, (ii) combine explanatory attributes to remove reverse discrimination, and (iii) deal with numerical sensitive attributes. The performance and fairness of the proposed algorithm are evaluated in simulations with synthetic and real-world datasets.
Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society a dapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا