ﻻ يوجد ملخص باللغة العربية
Motivated by the recent progresses in the formulation of geometric theories for the fractional quantum Hall states, we propose a novel non-relativistic geometric model for the Laughlin states based on an extension of the Nappi-Witten geometry. We show that the U(1) gauge sector responsible for the fractional Hall conductance, the gravitational Chern-Simons action and Wen-Zee term associated to the Hall viscosity can be derived from a single Chern-Simons theory with a gauge connection that takes values in the extended Nappi-Witten algebra. We then provide a new derivation of the chiral boson associated to the gapless edge states from the Wess-Zumino-Witten model that is induced by the Chern-Simons theory on the boundary.
In this work, we propose the quantum Hall system as a platform for exploring black hole phenomena. By exhibiting deep rooted commonalities between lowest Landau level and spacetime symmetries, we show that features of both quantum Hall and gravitatio
Suppose a classical electron is confined to move in the $xy$ plane under the influence of a constant magnetic field in the positive $z$ direction. It then traverses a circular orbit with a fixed positive angular momentum $L_z$ with respect to the cen
We report observation of the fractional quantum Hall effect (FQHE) in high mobility multi-terminal graphene devices, fabricated on a single crystal boron nitride substrate. We observe an unexpected hierarchy in the emergent FQHE states that may be ex
The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. W
In the fractional quantum Hall effect regime we measure diagonal ($rho_{xx}$) and Hall ($rho_{xy}$) magnetoresistivity tensor components of two-dimensional electron system (2DES) in gated GaAs/Al$_{x}$Ga$_{1-x}$As heterojunctions, together with capac