ﻻ يوجد ملخص باللغة العربية
As a prototype model of topological quantum memory, two-dimensional toric code is genuinely immune to generic local static perturbations, but fragile at finite temperature and also after non-equilibrium time evolution at zero temperature. We show that dynamical localization induced by disorder makes the time evolution a local unitary transformation at all times, which keeps topological order robust after a quantum quench. We verify this conclusion by investigating the Wilson loop expectation value and topological entanglement entropy. Our results suggest that the two dimensional topological quantum memory can be dynamically robust at zero temperature.
Machine-learning driven models have proven to be powerful tools for the identification of phases of matter. In particular, unsupervised methods hold the promise to help discover new phases of matter without the need for any prior theoretical knowledg
We consider chiral electrons moving along the 1D helical edge of a 2D topological insulator and interacting with a disordered chain of Kondo impurities. Assuming the electron-spin couplings of random anisotropies, we map this system to the problem of
A key feature of the many-body localized phase is the breaking of ergodicity and consequently the emergence of local memory; revealed as the local preservation of information over time. As memory is necessarily a time dependent concept, it has been p
We investigate the localization and topological transitions in a one-dimensional (interacting) non-Hermitian quasiperiodic lattice, which is described by a generalized Aubry-Andr{e}-Harper model with irrational modulations in the off-diagonal hopping
We consider paradigmatic quenched disordered quantum spin models, viz., the XY spin glass and random-field XY models, and show that quenched averaged quantum correlations can exhibit the order-from-disorder phenomenon for finite-size systems as well