ﻻ يوجد ملخص باللغة العربية
A key feature of the many-body localized phase is the breaking of ergodicity and consequently the emergence of local memory; revealed as the local preservation of information over time. As memory is necessarily a time dependent concept, it has been partially captured by a few extant studies of dynamical quantities. However, these quantities are neither optimal, nor democratic with respect to input state; and as such a fundamental and complete information theoretic understanding of local memory in the context of many-body localization remains elusive. We introduce the dynamical Holevo quantity as the true quantifier of local memory, outlining its advantages over other quantities such as the imbalance or entanglement entropy. We find clear scaling behavior in its steady-state across the many-body localization transition, and determine a family of two-parameter scaling ansatze which captures this behavior. We perform a comprehensive finite size scaling analysis of this dynamical quantity extracting the transition point and scaling exponents.
As strength of disorder enhances beyond a threshold value in many-body systems, a fundamental transformation happens through which the entire spectrum localizes, a phenomenon known as many-body localization. This has profound implications as it break
Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic quantum matter. Motivated by the recent experimental progress in realizing disordered and interacting chains of superconducting transmon devices, we
One fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept, challenging our understanding
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a l
Many-body localization (MBL) describes a quantum phase where an isolated interacting system subject to sufficient disorder displays non-ergodic behavior, evading thermal equilibrium that occurs under its own dynamics. Previously, the thermalization-M