ﻻ يوجد ملخص باللغة العربية
Machine-learning driven models have proven to be powerful tools for the identification of phases of matter. In particular, unsupervised methods hold the promise to help discover new phases of matter without the need for any prior theoretical knowledge. While for phases characterized by a broken symmetry, the use of unsupervised methods has proven to be successful, topological phases without a local order parameter seem to be much harder to identify without supervision. Here, we use an unsupervised approach to identify topological phases and transitions out of them. We train artificial neural nets to relate configurational data or measurement outcomes to quantities like temperature or tuning parameters in the Hamiltonian. The accuracy of these predictive models can then serve as an indicator for phase transitions. We successfully illustrate this approach on both the classical Ising gauge theory as well as on the quantum ground state of a generalized toric code.
As a prototype model of topological quantum memory, two-dimensional toric code is genuinely immune to generic local static perturbations, but fragile at finite temperature and also after non-equilibrium time evolution at zero temperature. We show tha
We consider paradigmatic quenched disordered quantum spin models, viz., the XY spin glass and random-field XY models, and show that quenched averaged quantum correlations can exhibit the order-from-disorder phenomenon for finite-size systems as well
The recently discovered three dimensional or bulk topological insulators are expected to exhibit exotic quantum phenomena. It is believed that a trivial insulator can be twisted into a topological state by modulating the spin-orbit interaction or the crystal lattice via odd number of band
The measurement precision of modern quantum simulators is intrinsically constrained by the limited set of measurements that can be efficiently implemented on hardware. This fundamental limitation is particularly severe for quantum algorithms where co
Classical correlations of ground states typically decay exponentially and polynomially, respectively for gapped and gapless short-ranged quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. How