ﻻ يوجد ملخص باللغة العربية
We use the S-matrix bootstrap to carve out the space of unitary, crossing symmetric and supersymmetric graviton scattering amplitudes in ten dimensions. We focus on the leading Wilson coefficient $alpha$ controlling the leading correction to maximal supergravity. The negative region $alpha<0$ is excluded by a simple dual argument based on linearized unitarity (the desert). A whole semi-infinite region $alpha gtrsim 0.14$ is allowed by the primal bootstrap (the garden). A finite intermediate region is excluded by non-perturbative unitarity (the swamp). Remarkably, string theory seems to cover all (or at least almost all) the garden from very large positive $alpha$ -- at weak coupling -- to the swamp boundary -- at strong coupling.
The energies of glue in the presence of a static quark-antiquark pair are calculated for separations r ranging from 0.1 fm to 4 fm and for various quark-antiquark orientations on the lattice. Our simulations use an improved gauge-field action on anis
We consider two-dimensional Yang-Mills theories on arbitrary Riemann surfaces. We introduce a generalized Yang-Mills action, which coincides with the ordinary one on flat surfaces but differs from it in its coupling to two-dimensional gravity. The qu
With no free parameter (except the string scale $M_S$), dynamical flux compactification in Type IIB string theory determines both the cosmological constant (vacuum energy density) $Lambda$ and the Planck mass $M_P$ in terms of $M_S$, thus yielding th
The direct searches for Superymmetry at colliders can be complemented by direct searches for dark matter (DM) in underground experiments, if one assumes the Lightest Supersymmetric Particle (LSP) provides the dark matter of the universe. It will be s
We show that four-dimensional de Sitter space is a Glauber-Sudarshan state, i.e. a coherent state, over a supersymmetric solitonic background in full string theory. We argue that such a state is only realized in the presence of temporally varying deg