ترغب بنشر مسار تعليمي؟ اضغط هنا

Four-dimensional de Sitter space is a Glauber-Sudarshan state in string theory

91   0   0.0 ( 0 )
 نشر من قبل Keshav Dasgupta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that four-dimensional de Sitter space is a Glauber-Sudarshan state, i.e. a coherent state, over a supersymmetric solitonic background in full string theory. We argue that such a state is only realized in the presence of temporally varying degrees of freedom and including quantum corrections, with supersymmetry being broken spontaneously. On the other hand, fluctuations over the resulting de Sitter space is governed by the Agarwal-Tara state, which is a graviton (and flux)-added coherent state. Once de Sitter space is realized as a coherent state, and not as a vacuum, its ability to remain out of the swampland as well as issues regarding its (meta)stability, vacuum energy, and finite entropy appear to have clear resolutions.

قيم البحث

اقرأ أيضاً

Glauber-Sudarshan states, sometimes simply referred to as Glauber states, or alternatively as coherent and squeezed-coherent states, are interesting states in the configuration spaces of any quantum field theories, that closely resemble classical tra jectories in space-time. In this paper, we identify four-dimensional de Sitter space as a coherent state over a supersymmetric Minkowski vacuum. Although such an identification is not new, what is new however is the claim that this is realizable in full string theory, but only in conjunction with temporally varying degrees of freedom and quantum corrections resulting from them. Furthermore, fluctuations over the de Sitter space is governed by a generalized graviton (and flux)-added coherent state, also known as the Agarwal-Tara state. The realization of de Sitter space as a state, and not as a vacuum, resolves many issues associated with its entropy, zero-point energy and trans-Planckian censorship, amongst other things.
We provide further evidence to support the fact that a four-dimensional effective field theory description with de Sitter isometries in IIB string theory, overcoming the no-go and the swampland criteria, can only exist if de Sitter space is realized as a Glauber-Sudarshan state. We show here that this result is independent of the choice of de Sitter slicings. The Glauber-Sudarshan state, constructed by shifting the interacting vacuum in the M-theory uplift of the scenario, differs from a standard coherent state in QFT in the sense that the shape and size of the state changes with respect to time, implying changes in the graviton and the flux quanta. Despite this, the expectation values of the graviton and flux operators in such a state reproduce the exact de Sitter background, as long as we are within the temporal bound set by the onset of the strong coupling in the dual type IIA side, and satisfy the corresponding Schwinger-Dysons equations in the presence of hierarchically controlled perturbative and non-perturbative quantum corrections. Additionally, we provide a detailed study of the fluxes supporting the Glauber-Sudarshan state in the M-theory uplift of the IIB scenario. We show explicitly how the Bianchi identities, anomaly cancellation and flux quantization conditions, along-with the constraints from the Schwinger-Dysons equations, conspire together to provide the necessary temporal dependences to support such a state in full M-theory. We also discuss how our analysis points towards a surprising connection to the four-dimensional null energy condition, for a Friedman-Lemaitre-Robertson-Walker state in the IIB side, as a consistency condition for the existence of an effective field theory description in M-theory.
We study M-theory compactification on ${mathbb{T}^7/ mathbb{Z}_2^3}$ in the presence of a seven-flux, metric fluxes and KK monopoles. The effective four-dimensional supergravity has seven chiral multiplets whose couplings are specified by the $G_2$-s tructure of the internal manifold. We supplement the corresponding superpotential by a KKLT type non-perturbative exponential contribution for all, or for some of the seven moduli, and find a discrete set of supersymmetric Minkowski minima. We also study type IIA and type IIB string theory compactified on ${mathbb{T}^6/ mathbb{Z}_2^2}$. In type IIA, we use a six-flux, geometric fluxes and non-perturbative exponents. In type IIB theory, we use F and H fluxes, and non-geometric Q and P fluxes, corresponding to consistently gauged supergravity with certain embedding tensor components, emph{without non-perturbative exponents}. Also in these situations, we produce discrete Minkowski minima. Finally, to construct dS vacua starting from these Minkowski progenitors, we follow the procedure of mass production of dS vacua.
245 - Songyuan Li , Jan Troost 2020
We construct a string theory in three-dimensional anti-de Sitter space-time that is independent of the boundary metric. It is a topologically twisted theory of quantum gravity. We study string theories with an asymptotic N=2 superconformal symmetry a nd demonstrate that, when the world sheet coupling to the space-time boundary metric undergoes a U(1) R-symmetry twist, the space-time boundary energy-momentum tensor becomes topological. As a by-product of our analysis, we obtain the world sheet vertex operator that codes the space-time energy-momentum for conformally flat boundary metrics.
We argue that, in the presence of time-dependent fluxes and quantum corrections, four-dimensional de Sitter solutions should appear in the type IIB string landscape and not in the swampland. Our construction considers generic choices of local and non -local quantum terms and satisfies the no-go and the swampland criteria, the latter being recently upgraded using the trans-Planckian cosmic censorship. Interestingly, both time-independent Newton constant and moduli stabilization may be achieved in such backgrounds even in the presence of time-dependent fluxes and internal spaces. However, once the time-dependence is switched off, any four-dimensional solution with de Sitter isometries appears to have no simple effective field theory descriptions and is back in the swampland.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا