ﻻ يوجد ملخص باللغة العربية
The direct searches for Superymmetry at colliders can be complemented by direct searches for dark matter (DM) in underground experiments, if one assumes the Lightest Supersymmetric Particle (LSP) provides the dark matter of the universe. It will be shown that within the Constrained minimal Supersymmetric Model (CMSSM) the direct searches for DM are complementary to direct LHC searches for SUSY and Higgs particles using analytical formulae. A combined excluded region from LHC, WMAP and XENON100 will be provided, showing that within the CMSSM gluinos below 1 TeV and LSP masses below 160 GeV are excluded (m_{1/2} > 400 GeV) independent of the squark masses.
We systematically analyze the flavor color spin structure of the pentaquark $q^4bar{Q}$ system in a constituent quark model based on the chromomagnetic interaction in both the SU(3) flavor symmetric and SU(3) flavor broken case with and without charm
We use the S-matrix bootstrap to carve out the space of unitary, crossing symmetric and supersymmetric graviton scattering amplitudes in ten dimensions. We focus on the leading Wilson coefficient $alpha$ controlling the leading correction to maximal
Supersymmetry, a new symmetry that relates bosons and fermions in particle physics, still escapes observation. Search for supersymmetry is one of the main aims of the Large Hadron Collider. The other possible manifestation of supersymmetry is the Dar
This talk discusses various aspects of the structure of space-time presenting mechanisms leading to the explanation of the rigidity of the manifold and to the emergence of time, i.e. of the Lorentzian signature. The proposed ingredient is the analog,
The energies of glue in the presence of a static quark-antiquark pair are calculated for separations r ranging from 0.1 fm to 4 fm and for various quark-antiquark orientations on the lattice. Our simulations use an improved gauge-field action on anis