ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit coupling controlled $J=3/2$ electronic ground state in 5$d^{3}$ oxides

79   0   0.0 ( 0 )
 نشر من قبل Andrew Christianson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Discovering new spin-orbit entangled ground states and emergent phases of matter requires both experimentally probing the relevant energy scales and applying suitable theoretical models. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca$_3$LiOsO$_6$ and Ba$_2$YOsO$_6$. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal the ground state of $5d^3$ based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.



قيم البحث

اقرأ أيضاً

We report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr2ScOsO6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d3 Os5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. This demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective properties of 4d3 and 5d3 systems, and that theoretical treatments must include spin-orbit coupling.
120 - Y. Y. Chin , Z. Hu , H.-J. Lin 2019
We have studied the electronic structure of BaCoO$_3$ using soft x-ray absorption spectroscopy at the Co-$L_{2,3}$ and O-$K$ edges, magnetic circular dichroism at the Co-$L_{2,3}$ edges, as well as valence band hard x-ray photoelectron spectroscopy. The quantitative analysis of the spectra established that the Co ions are in the formal low-spin tetravalent 3$d^5$ state and that the system is a negative charge transfer Mott insulator. The spin-orbit coupling plays also an important role for the magnetism of the system. At the same time, a trigonal crystal field is present with sufficient strength to bring the 3$d^5$ ion away from the $J_{eff} = 1/2$ state. The sign of this crystal field is such that the $a_{1g}$ orbital is doubly occupied, explaining the absence of a Peierls transition in this system which consists of chains of face-sharing CoO$_6$ octahedra. Moreover, with one hole residing in the $e_g^{pi}$, the presence of an orbital moment and strong magneto-crystalline anisotropy can be understood. Yet, we also infer that crystal fields with lower symmetry must be present to reproduce the measured orbital moment quantitatively, thereby suggesting the possibility for orbital ordering to occur in BaCoO$_3$.
Complex oxides with $4d$ and $5d$ transition-metal ions recently emerged as a new paradigm in correlated electron physics, due to the interplay between spin-orbit coupling and electron interactions. For $4d$ and $5d$ ions, the spin-orbit coupling, $z eta$, can be as large as 0.2-0.4 eV, which is comparable with and often exceeds other relevant parameters such as Hunds coupling $J_{rm H}$, noncubic crystal field splitting $Delta$, and the electron hopping amplitude $t$. This gives rise to a variety of spin-orbit-entangled degrees of freedom and, crucially, non-trivial interactions between them that depend on the $d$-electron configuration, the chemical bonding, and the lattice geometry. Exotic electronic phases often emerge, including spin-orbit assisted Mott insulators, quantum spin liquids, excitonic magnetism, multipolar orderings and correlated topological semimetals. This paper provides a selective overview of some of the most interesting spin-orbit-entangled phases that arise in $4d$ and $5d$ transition-metal compounds.
In this work we study the possible occurrence of topological insulators for 2D fermions of high spin. They can be realized in cold fermion systems with ground-state atomic spin $F>tfrac{1}{2}$, if the optical potential is properly designed, and spin- orbit coupling is relevant. The latter is shown to be induced by letting the fermions interact with a specially tuned arrangement of polarized laser beams. When the system is subject to a perpendicular magnetic field, time reversal symmetry is broken but the ensuing Hamiltonian is still endowed with a mirror symmetry. Topological insulators for fermions of higher spins are fundamentally distinct from those pertaining to spin $frac{1}{2}$. The underlying physics reveals a plethora of positive and negative mirror Chern numbers, respectively corresponding to chiral and anti-chiral edge states. Here, for simplicity, we concentrate on the case $F=tfrac{3}{2}$ (which is suitable for $^{6}$Li or $^2$H atoms) but extension to higher spins (such as $^{40}$K whose ground-state spin is $F=tfrac{9}{2}$), is straightforward.
We study a spin-orbital model for 4$d^{1}$ or 5$d^{1}$ Mott insulators in ordered double perovskites with strong spin-orbit coupling. This model is conveniently written in terms of pseudospin and pseudo-orbital operators representing multipoles of th e effective $j=3/2$ angular momentum. Similarities between this model and the effective theories of Kitaev materials motivate the proposal of a chiral spin-orbital liquid with Majorana fermion excitations. The thermodynamic and spectroscopic properties of this quantum spin liquid are characterized using parton mean-field theory. The heat capacity, spin-lattice relaxation rate, and dynamic structure factor for inelastic neutron scattering are calculated and compared with the experimental data for the spin liquid candidate Ba$_{2}$YMoO$_{6}$. Moreover, based on a symmetry analysis, we discuss the operators involved in resonant inelastic X-ray scattering (RIXS) amplitudes for double perovskite compounds. In general, the RIXS cross sections allow one to selectively probe pseudospin and pseudo-orbital degrees of freedom. For the chiral spin-orbital liquid in particular, these cross sections provide information about the spectrum for different flavors of Majorana fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا