ترغب بنشر مسار تعليمي؟ اضغط هنا

Strategyproof Facility Location Mechanisms on Discrete Trees

81   0   0.0 ( 0 )
 نشر من قبل Alina Filimonov
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the problem of strategyproof (SP) facility location mechanisms on discrete trees. Our main result is a full characterization of onto and SP mechanisms. In particular, we prove that when a single agent significantly affects the outcome, the trajectory of the facility is almost contained in the trajectory of the agent, and both move in the same direction along the common edges. We show tight relations of our characterization to previous results on discrete lines and on continuous trees. We then derive further implications of the main result for infinite discrete lines.



قيم البحث

اقرأ أيضاً

We study variants of the stable marriage and college admissions models in which the agents are allowed to express weak preferences over the set of agents on the other side of the market and the option of remaining unmatched. For the problems that we address, previous authors have presented polynomial-time algorithms for computing a Pareto-stable matching. In the case of college admissions, these algorithms require the preferences of the colleges over groups of students to satisfy a technical condition related to responsiveness. We design new polynomial-time Pareto-stable algorithms for stable marriage and college admissions that correspond to strategyproof mechanisms. For stable marriage, it is known that no Pareto-stable mechanism is strategyproof for all of the agents; our algorithm provides a mechanism that is strategyproof for the agents on one side of the market. For college admissions, it is known that no Pareto-stable mechanism can be strategyproof for the colleges; our algorithm provides a mechanism that is strategyproof for the students.
We consider a new setting of facility location games with ordinal preferences. In such a setting, we have a set of agents and a set of facilities. Each agent is located on a line and has an ordinal preference over the facilities. Our goal is to desig n strategyproof mechanisms that elicit truthful information (preferences and/or locations) from the agents and locate the facilities to minimize both maximum and total cost objectives as well as to maximize both minimum and total utility objectives. For the four possible objectives, we consider the 2-facility settings in which only preferences are private, or locations are private. For each possible combination of the objectives and settings, we provide lower and upper bounds on the approximation ratios of strategyproof mechanisms, which are asymptotically tight up to a constant. Finally, we discuss the generalization of our results beyond two facilities and when the agents can misreport both locations and preferences.
Recommendation systems are extremely popular tools for matching users and contents. However, when content providers are strategic, the basic principle of matching users to the closest content, where both users and contents are modeled as points in so me semantic space, may yield low social welfare. This is due to the fact that content providers are strategic and optimize their offered content to be recommended to as many users as possible. Motivated by modern applications, we propose the widely studied framework of facility location games to study recommendation systems with strategic content providers. Our conceptual contribution is the introduction of a $textit{mediator}$ to facility location models, in the pursuit of better social welfare. We aim at designing mediators that a) induce a game with high social welfare in equilibrium, and b) intervene as little as possible. In service of the latter, we introduce the notion of $textit{intervention cost}$, which quantifies how much damage a mediator may cause to the social welfare when an off-equilibrium profile is adopted. As a case study in high-welfare low-intervention mediator design, we consider the one-dimensional segment as the user domain. We propose a mediator that implements the socially optimal strategy profile as the unique equilibrium profile, and show a tight bound on its intervention cost. Ultimately, we consider some extensions, and highlight open questions for the general agenda.
The study of approximate mechanism design for facility location problems has been in the center of research at the intersection of artificial intelligence and economics for the last decades, largely due to its practical importance in various domains, such as social planning and clustering. At a high level, the goal is to design mechanisms to select a set of locations on which to build a set of facilities, aiming to optimize some social objective and ensure desirable properties based on the preferences of strategic agents, who might have incentives to misreport their private information such as their locations. This paper presents a comprehensive survey of the significant progress that has been made since the introduction of the problem, highlighting the different variants and methodologies, as well as the most interesting directions for future research.
We consider a facility location game in which $n$ agents reside at known locations on a path, and $k$ heterogeneous facilities are to be constructed on the path. Each agent is adversely affected by some subset of the facilities, and is unaffected by the others. We design two classes of mechanisms for choosing the facility locations given the reported agent preferences: utilitarian mechanisms that strive to maximize social welfare (i.e., to be efficient), and egalitarian mechanisms that strive to maximize the minimum welfare. For the utilitarian objective, we present a weakly group-strategyproof efficient mechanism for up to three facilities, we give a strongly group-strategyproof mechanism that guarantees at least half of the optimal social welfare for arbitrary $k$, and we prove that no strongly group-strategyproof mechanism achieves an approximation ratio of $5/4$ for one facility. For the egalitarian objective, we present a strategyproof egalitarian mechanism for arbitrary $k$, and we prove that no weakly group-strategyproof mechanism achieves a $o(sqrt{n})$ approximation ratio for two facilities. We extend our egalitarian results to the case where the agents are located on a cycle, and we extend our first egalitarian result to the case where the agents are located in the unit square.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا