ﻻ يوجد ملخص باللغة العربية
Recommendation systems are extremely popular tools for matching users and contents. However, when content providers are strategic, the basic principle of matching users to the closest content, where both users and contents are modeled as points in some semantic space, may yield low social welfare. This is due to the fact that content providers are strategic and optimize their offered content to be recommended to as many users as possible. Motivated by modern applications, we propose the widely studied framework of facility location games to study recommendation systems with strategic content providers. Our conceptual contribution is the introduction of a $textit{mediator}$ to facility location models, in the pursuit of better social welfare. We aim at designing mediators that a) induce a game with high social welfare in equilibrium, and b) intervene as little as possible. In service of the latter, we introduce the notion of $textit{intervention cost}$, which quantifies how much damage a mediator may cause to the social welfare when an off-equilibrium profile is adopted. As a case study in high-welfare low-intervention mediator design, we consider the one-dimensional segment as the user domain. We propose a mediator that implements the socially optimal strategy profile as the unique equilibrium profile, and show a tight bound on its intervention cost. Ultimately, we consider some extensions, and highlight open questions for the general agenda.
We consider a new setting of facility location games with ordinal preferences. In such a setting, we have a set of agents and a set of facilities. Each agent is located on a line and has an ordinal preference over the facilities. Our goal is to desig
We study the facility location games with candidate locations from a mechanism design perspective. Suppose there are n agents located in a metric space whose locations are their private information, and a group of candidate locations for building fac
This paper is devoted to the two-opposite-facility location games with a penalty whose amount depends on the distance between the two facilities to be opened by an authority. The two facilities are opposite in that one is popular and the other is obn
We address the problem of strategyproof (SP) facility location mechanisms on discrete trees. Our main result is a full characterization of onto and SP mechanisms. In particular, we prove that when a single agent significantly affects the outcome, the
The study of approximate mechanism design for facility location problems has been in the center of research at the intersection of artificial intelligence and economics for the last decades, largely due to its practical importance in various domains,