ﻻ يوجد ملخص باللغة العربية
Combining robust magnetism, strong spin-orbit coupling and unique thickness-dependent properties of van der Waals crystals could enable new spintronics applications. Here, using density functional theory, we propose the (MnSb$_2$Te$_4$)$cdot$(Sb$_2$Te$_3$)$_n$ family of stoichiometric van der Waals compounds that harbour multiple topologically-nontrivial magnetic phases. In the groundstate, the first three members of the family, i.e. MnSb$_2$Te$_4$, ($n=0$), MnSb$_4$Te$_7$, ($n=1$), and MnSb$_6$Te$_{10}$, ($n=2$), are 3D antiferromagnetic topological insulators (AFMTIs), while for $n geq 3$ a special phase is formed, in which a nontrivial topological order coexists with a partial magnetic disorder in the system of the decoupled 2D ferromagnets, whose magnetizations point randomly along the third direction. Furthermore, due to a weak interlayer exchange coupling, these materials can be field-driven into the FM Weyl semimetal ($n=0$) or FM axion insulator states ($n geq 1$). Finally, in two dimensions we reveal these systems to show intrinsic quantum anomalous Hall and AFM axion insulator states, as well as quantum Hall state, achieved under external magnetic field, but without Landau levels. Our results provide a solid computational proof that MnSb$_2$Te$_4$, is not topologically trivial as was previously believed that opens possibilities of realization of a wealth of topologically-nontrivial states in the (MnSb$_2$Te$_4$)$cdot$(Sb$_2$Te$_3$)$_n$ family.
The interplay of magnetism and topology is a key research subject in condensed matter physics and material science, which offers great opportunities to explore emerging new physics, like the quantum anomalous Hall (QAH) effect, axion electrodynamics
Quantum states of matter combining non-trivial topology and magnetism attract a lot of attention nowadays; the special focus is on magnetic topological insulators (MTIs) featuring quantum anomalous Hall and axion insulator phases. Feasibility of many
Herein a genetic algorithm for optimising the design of layered 2D heterostructure is proposed. As a proof-of-concept it is applied to Sb$_2$Te$_3$-GeTe phase-change material superlattices, and the resulting lowest energy structure is grown experimen
In the newly discovered magnetic topological insulator MnBi$_2$Te$_4$, both axion insulator state and quantized anomalous Hall effect (QAHE) have been observed by tuning the magnetic structure. The related (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_n$ heter
Topological surface states with intrinsic magnetic ordering in the MnBi$_2$Te$_4$(Bi$_2$Te$_3$)$_n$ compounds have been predicted to host rich topological phenomena including quantized anomalous Hall effect and axion insulator state. Here we use scan