ﻻ يوجد ملخص باللغة العربية
Herein a genetic algorithm for optimising the design of layered 2D heterostructure is proposed. As a proof-of-concept it is applied to Sb$_2$Te$_3$-GeTe phase-change material superlattices, and the resulting lowest energy structure is grown experimentally. The similarity of the computational and experimental structures is verified with the comparison of XRD spectra. The structure is found to be within 0.92 meV/at. from the energetically most favorable known structure for Ge$_2$Sb$_2$Te$_5$.
Combining robust magnetism, strong spin-orbit coupling and unique thickness-dependent properties of van der Waals crystals could enable new spintronics applications. Here, using density functional theory, we propose the (MnSb$_2$Te$_4$)$cdot$(Sb$_2$T
Anomalous Nernst effect, a result of charge current driven by temperature gradient, provides a probe of the topological nature of materials due to its sensitivity to the Berry curvature near the Fermi level. Fe3GeTe2, one important member of the rece
The weak interlayer coupling in van der Waals (vdW) magnets has confined their application to two dimensional (2D) spintronic devices. Here, we demonstrate that the interlayer coupling in a vdW magnet Fe$_3$GeTe$_2$ (FGT) can be largely modulated by
The van der Waals ferromagnet Fe$_3$GeTe$_2$ has recently attracted extensive research attention due to its intertwined magnetic, electronic and topological properties. Here, using high-resolution angle-resolved photoemission spectroscopy, we systema
The interplay of magnetism and topology is a key research subject in condensed matter physics and material science, which offers great opportunities to explore emerging new physics, like the quantum anomalous Hall (QAH) effect, axion electrodynamics