ﻻ يوجد ملخص باللغة العربية
Topological surface states with intrinsic magnetic ordering in the MnBi$_2$Te$_4$(Bi$_2$Te$_3$)$_n$ compounds have been predicted to host rich topological phenomena including quantized anomalous Hall effect and axion insulator state. Here we use scanning tunneling microscopy to image the surface Dirac fermions in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$. We have determined the energy dispersion and helical spin texture of the surface states through quasiparticle interference patterns far above Dirac energy, which confirms its topological nature. Approaching the Dirac point, the native defects in the MnBi$_2$Te$_4$ septuple layer give rise to resonance states which extend spatially and potentially hinder the detection of a mass gap in the spectra. Our results demonstrate that regulating defects is essential to realize exotic topological states at higher temperatures in these compounds.
In the newly discovered magnetic topological insulator MnBi$_2$Te$_4$, both axion insulator state and quantized anomalous Hall effect (QAHE) have been observed by tuning the magnetic structure. The related (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_n$ heter
The interplay of magnetism and topology is a key research subject in condensed matter physics and material science, which offers great opportunities to explore emerging new physics, like the quantum anomalous Hall (QAH) effect, axion electrodynamics
Quantum states of matter combining non-trivial topology and magnetism attract a lot of attention nowadays; the special focus is on magnetic topological insulators (MTIs) featuring quantum anomalous Hall and axion insulator phases. Feasibility of many
Thin layers of topological insulator materials are quasi-two-dimensional systems featuring a complex interplay between quantum confinement and topological band structure. To understand the role of the spatial distribution of carriers in electrical tr
Using scanning tunneling microscopy and spectroscopy, we visualized the native defects in antiferromagnetic topological insulator $mathrm{MnBi_2Te_4}$. Two native defects $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Te}}$ antisites can be well resolved in the t