ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity to New Physics of Isotope Shift Studies using the Coronal Lines of Highly Charged Calcium Ions

68   0   0.0 ( 0 )
 نشر من قبل Nils-Holger Rehbehn
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Promising searches for new physics beyond the current Standard Model (SM) of particle physics are feasible through isotope-shift spectroscopy, which is sensitive to a hypothetical fifth force between the neutrons of the nucleus and the electrons of the shell. Such an interaction would be mediated by a new particle which could in principle be associated with dark matter. In so-called King plots, the mass-scaled frequency shifts of two optical transitions are plotted against each other for a series of isotopes. Subtle deviations from the expected linearity could reveal such a fifth force. Here, we study experimentally and theoretically six transitions in highly charged ions of Ca, an element with five stable isotopes of zero nuclear spin. Some of the transitions are suitable for upcoming high-precision coherent laser spectroscopy and optical clocks. Our results provide a sufficient number of clock transitions for -- in combination with those of singly charged Ca$^+$ -- application of the generalized King plot method. This will allow future high-precision measurements to remove higher-order SM-related nonlinearities and open a new door to yet more sensitive searches for unknown forces and particles.



قيم البحث

اقرأ أيضاً

Relativistic calculations of the isotope shifts of energy levels in highly charged Li-like ions are performed. The nuclear recoil (mass shift) contributions are calculated by merging the perturbative and large-scale configuration-interaction Dirac-Fo ck-Sturm (CI-DFS) methods. The nuclear size (field shift) contributions are evaluated by the CI-DFS method including the electron-correlation, Breit, and QED corrections. The nuclear deformation and nuclear polarization corrections to the isotope shifts in Li-like neodymium, thorium, and uranium are also considered. The results of the calculations are compared with the theoretical values obtained with other methods.
It is usually assumed that the field isotope shift (FIS) is completely determined by the change of the averaged squared values of the nuclear charge radius $langle r^2rangle$. Relativistic corrections modify the expression for FIS, which is actually described by the change of $langle r^{2 gamma}rangle$, where $gamma=sqrt{1 - Z^2 alpha^2}$. In the present paper we consider corrections to FIS which are due to the nuclear deformation and due to the predicted reduced charge density in the middle of the superheavy nuclei produced by a very strong proton repulsion (hole in the nuclear centre). Specifically, we investigate effects which can not be completely reduced to the change of $langle r^2 rangle$ or $langle r^{2 gamma}rangle$.
The present status of tests of QED with highly charged ions is reviewed. The theoretical predictions for the Lamb shift and the transition energies are compared with available experimental data. Recent achievements in studies of the hyperfine splitti ng and the $g$-factor isotope shift with highly charged ions are reported. Special attention is paid to tests of QED within and beyond the Furry picture at strong-coupling regime. Prospects for tests of QED at supercritical fields that can be created in low-energy heavy-ion collisions are discussed as well.
We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, alpha. The transitions are in the optical despite t he large ionisation energies because they lie on the level-crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionisation energy, resulting in the largest alpha-sensitivity seen in atomic systems. The lines include positive and negative shifters.
Precision spectroscopy of atomic systems is an invaluable tool for the advancement of our understanding of fundamental interactions and symmetries. Recently, highly charged ions (HCI) have been proposed for sensitive tests of physics beyond the Stand ard Model and as candidates for high-accuracy atomic clocks. However, the implementation of these ideas has been hindered by the parts-per-million level spectroscopic accuracies achieved to date. Here, we cool a trapped HCI to the lowest reported temperatures, and introduce coherent laser spectroscopy on HCI with an eight orders of magnitude leap in precision. We probe the forbidden optical transition in $^{40}$Ar$^{13+}$ at 441 nm using quantum-logic spectroscopy and measure both its excited-state lifetime and $g$-factor. Our work ultimately unlocks the potential of HCI, a large, ubiquitous atomic class, for quantum information processing, novel frequency standards, and highly sensitive tests of fundamental physics, such as searching for dark matter candidates or violations of fundamental symmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا