ﻻ يوجد ملخص باللغة العربية
Superdiffusive finite-temperature transport has been recently observed in a variety of integrable systems with nonabelian global symmetries. Superdiffusion is caused by giant Goldstone-like quasiparticles stabilized by integrability. Here, we argue that these giant quasiparticles remain long-lived, and give divergent contributions to the low-frequency conductivity $sigma(omega)$, even in systems that are not perfectly integrable. We find, perturbatively, that $ sigma(omega) sim omega^{-1/3}$ for translation-invariant static perturbations that conserve energy, and $sigma(omega) sim | log omega |$ for noisy perturbations. The (presumable) crossover to regular diffusion appears to lie beyond low-order perturbation theory. By contrast, integrability-breaking perturbations that break the nonabelian symmetry yield conventional diffusion. Numerical evidence supports the distinction between these two classes of perturbations.
This review summarizes recent advances in our understanding of anomalous transport in spin chains, viewed through the lens of integrability. Numerical advances, based on tensor-network methods, have shown that transport in many canonical integrable s
Finite-temperature spin transport in the quantum Heisenberg spin chain is known to be superdiffusive, and has been conjectured to lie in the Kardar-Parisi-Zhang (KPZ) universality class. Using a kinetic theory of transport, we compute the KPZ couplin
Anomalous finite-temperature transport has recently been observed in numerical studies of various integrable models in one dimension; these models share the feature of being invariant under a continuous non-abelian global symmetry. This work offers a
We derive the dominant contribution to the large-distance decay of correlation functions for a spin chain model that exhibits both Haldane and Neel phases in its ground state phase diagram. The analytic results are obtained by means of an approximate
The false vacuum decay has been a central theme in physics for half a century with applications to cosmology and to the theory of fundamental interactions. This fascinating phenomenon is even more intriguing when combined with the confinement of elem