ﻻ يوجد ملخص باللغة العربية
We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give rise to a new definition of limit linear series. This article and the first two that preceded it are the first in a series aimed to explore this new approach. In Part I, we set up the combinatorial framework and showed how graphs weighted with integer lengths associated to the edges provide tilings of Euclidean spaces by certain polytopes associated to the graph itself and to its subgraphs. In Part II, we described the arrangements of toric varieties associated to the tilings of Part I in several ways: using normal fans, as unions of orbits, by equations and as degenerations of tori. In the present Part III, we show how these combinatorial and toric frameworks allow us to describe all stable limits of a family of line bundles along a degenerating family of curves. Our main result asserts that the collection of all these limits is parametrized by a connected 0-dimensional closed substack of the Artin stack of all torsion-free rank-one sheaves on the limit curve. Moreover, we thoroughly describe this closed substack and all the closed substacks that arise in this way as certain torus quotients of the arrangements of toric varieties of Part II determined by the Voronoi tilings of Euclidean spaces studied in Part I.
We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give
We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give
For any two nef line bundles F and G on a toric variety X represented by lattice polyhedra P respectively Q, we present the universal equivariant extension of G by F under use of the connected components of the set theoretic difference of Q and P.
We call a sheaf on an algebraic variety immaculate if it lacks any cohomology including the zero-th one, that is, if the derived version of the global section functor vanishes. Such sheaves are the basic tools when building exceptional sequences, inv
There is a standard method to calculate the cohomology of torus-invariant sheaves $L$ on a toric variety via the simplicial cohomology of associated subsets $V(L)$ of the space $N_{mathbb R}$ of 1-parameter subgroups of the torus. For a line bundle $