ترغب بنشر مسار تعليمي؟ اضغط هنا

Immaculate line bundles on toric varieties

129   0   0.0 ( 0 )
 نشر من قبل Lars Kastner
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We call a sheaf on an algebraic variety immaculate if it lacks any cohomology including the zero-th one, that is, if the derived version of the global section functor vanishes. Such sheaves are the basic tools when building exceptional sequences, investigating the diagonal property, or the toric Frobenius morphism. In the present paper we focus on line bundles on toric varieties. First, we present a possibility of understanding their cohomology in terms of their (generalized) momentum polytopes. Then we present a method to exhibit the entire locus of immaculate divisors within the class group. This will be applied to the cases of smooth toric varieties of Picard rank two and three and to those being given by splitting fans. The locus of immaculate line bundles contains several linear strata of varying dimensions. We introduce a notion of relative immaculacy with respect to certain contraction morphisms. This notion will be stronger than plain immaculacy and provides an explanation of some of these linear strata.



قيم البحث

اقرأ أيضاً

We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give rise to a new definition of limit linear series. This article and its first and third part companion parts are the first in a series aimed to explore this new approach. In the first part, we set up the combinatorial framework and showed how graphs weighted with integer lengths associated to the edges provide tilings of Euclidean spaces by polytopes associated to the graph itself and to its subgraphs. In this part, we describe the arrangements of toric varieties associated to these tilings. Roughly speaking, the normal fan to each polytope in the tiling corresponds to a toric variety, and these toric varieties are glued together in an arrangement according to how the polytopes meet. We provide a thorough description of these toric arrangements from different perspectives: by using normal fans, as unions of torus orbits, by describing the (infinitely many) polynomial equations defining them in products of doubly infinite chains of projective lines, and as degenerations of algebraic tori. These results will be of use in the third part to achieve our goal of describing all stable limits of a family of line bundles along a degenerating family of curves.
For any two nef line bundles F and G on a toric variety X represented by lattice polyhedra P respectively Q, we present the universal equivariant extension of G by F under use of the connected components of the set theoretic difference of Q and P.
It is a long-standing question whether an arbitrary variety is desingularized by finitely many normalized Nash blow-ups. We consider this question in the case of a toric variety. We interpret the normalized Nash blow-up in polyhedral terms, show how continued fractions can be used to give an affirmative answer for a toric surface, and report on a computer investigation in which over a thousand 3- and 4-dimensional toric varieties were successfully resolved.
We use a polyhedral criterion for the existence of diagonal splittings to investigate which toric varieties X are diagonally split. Our results are stated in terms of the vector configuration given by primitive generators of the 1-dimensional cones i n the fan defining X. We show, in particular, that X is diagonally split at all q if and only if this configuration is unimodular, and X is not diagonally split at any q if this configuration is not 2-regular. We also study implications for the possibilities for the set of q at which a toric variety X is diagonally split.
175 - Klaus Altmann , David Ploog 2019
There is a standard method to calculate the cohomology of torus-invariant sheaves $L$ on a toric variety via the simplicial cohomology of associated subsets $V(L)$ of the space $N_{mathbb R}$ of 1-parameter subgroups of the torus. For a line bundle $ L$ represented by a formal difference $Delta^+-Delta^-$ of polyhedra in the character space $M_{mathbb R}$, [ABKW18] contains a simpler formula for the cohomology of $L$, replacing $V(L)$ by the set-theoretic difference $Delta^- setminus Delta^+$. Here, we provide a short and direct proof of this formula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا