ﻻ يوجد ملخص باللغة العربية
We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give rise to a new definition of limit linear series. This paper and its second and third companion parts are the first in a series aimed to explore this new approach. In the present article, we set up the combinatorial framework and show how graphs with integer lengths associated to the edges provide tilings of Euclidean spaces by certain polytopes associated to the graph itself and to certain of its subgraphs. We further provide a description of the combinatorial structure of these polytopes and the way they are glued together in the tiling. In the second part of the series, we describe the arrangements of toric varieties associated to these tilings. These results will be of use in the third part to achieve our goal of describing all stable limits of a family of line bundles along a degenerating family of curves.
We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give
We describe limits of line bundles on nodal curves in terms of toric arrangements associated to Voronoi tilings of Euclidean spaces. These tilings encode information on the relationship between the possibly infinitely many limits, and ultimately give
We prove Anzis and Tohaneanu conjecture, that is the Dirac-Motzkin conjecture for supersolvable line arrangements in the projective plane over an arbitrary field of characteristic zero. Moreover, we show that a divisionally free arrangements of lines
Let $X$ be a smooth irreducible complex algebraic variety of dimension $n$ and $L$ a very ample line bundle on $X$. Given a toric degeneration of $(X,L)$ satisfying some natural technical hypotheses, we construct a deformation ${J_s}$ of the complex
For any two nef line bundles F and G on a toric variety X represented by lattice polyhedra P respectively Q, we present the universal equivariant extension of G by F under use of the connected components of the set theoretic difference of Q and P.