ﻻ يوجد ملخص باللغة العربية
Cross-lingual voice conversion (VC) is an important and challenging problem due to significant mismatches of the phonetic set and the speech prosody of different languages. In this paper, we build upon the neural text-to-speech (TTS) model, i.e., FastSpeech, and LPCNet neural vocoder to design a new cross-lingual VC framework named FastSpeech-VC. We address the mismatches of the phonetic set and the speech prosody by applying Phonetic PosteriorGrams (PPGs), which have been proved to bridge across speaker and language boundaries. Moreover, we add normalized logarithm-scale fundamental frequency (Log-F0) to further compensate for the prosodic mismatches and significantly improve naturalness. Our experiments on English and Mandarin languages demonstrate that with only mono-lingual corpus, the proposed FastSpeech-VC can achieve high quality converted speech with mean opinion score (MOS) close to the professional records while maintaining good speaker similarity. Compared to the baselines using Tacotron2 and Transformer TTS models, the FastSpeech-VC can achieve controllable converted speech rate and much faster inference speed. More importantly, the FastSpeech-VC can easily be adapted to a speaker with limited training utterances.
Recent state-of-the-art neural text-to-speech (TTS) synthesis models have dramatically improved intelligibility and naturalness of generated speech from text. However, building a good bilingual or code-switched TTS for a particular voice is still a c
In voice conversion (VC), an approach showing promising results in the latest voice conversion challenge (VCC) 2020 is to first use an automatic speech recognition (ASR) model to transcribe the source speech into the underlying linguistic contents; t
The voice conversion challenge is a bi-annual scientific event held to compare and understand different voice conversion (VC) systems built on a common dataset. In 2020, we organized the third edition of the challenge and constructed and distributed
In this paper, we propose a new approach to pathological speech synthesis. Instead of using healthy speech as a source, we customise an existing pathological speech sample to a new speakers voice characteristics. This approach alleviates the evaluati
Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Both are key components of prosody