ﻻ يوجد ملخص باللغة العربية
In voice conversion (VC), an approach showing promising results in the latest voice conversion challenge (VCC) 2020 is to first use an automatic speech recognition (ASR) model to transcribe the source speech into the underlying linguistic contents; these are then used as input by a text-to-speech (TTS) system to generate the converted speech. Such a paradigm, referred to as ASR+TTS, overlooks the modeling of prosody, which plays an important role in speech naturalness and conversion similarity. Although some researchers have considered transferring prosodic clues from the source speech, there arises a speaker mismatch during training and conversion. To address this issue, in this work, we propose to directly predict prosody from the linguistic representation in a target-speaker-dependent manner, referred to as target text prediction (TTP). We evaluate both methods on the VCC2020 benchmark and consider different linguistic representations. The results demonstrate the effectiveness of TTP in both objective and subjective evaluations.
In this paper, we propose a new approach to pathological speech synthesis. Instead of using healthy speech as a source, we customise an existing pathological speech sample to a new speakers voice characteristics. This approach alleviates the evaluati
Cross-lingual voice conversion (VC) is an important and challenging problem due to significant mismatches of the phonetic set and the speech prosody of different languages. In this paper, we build upon the neural text-to-speech (TTS) model, i.e., Fas
Text-to-speech systems recently achieved almost indistinguishable quality from human speech. However, the prosody of those systems is generally flatter than natural speech, producing samples with low expressiveness. Disentanglement of speaker id and
In a typical voice conversion system, prior works utilize various acoustic features (e.g., the pitch, voiced/unvoiced flag, aperiodicity) of the source speech to control the prosody of generated waveform. However, the prosody is related with many fac
This paper proposes a novel voice conversion (VC) method based on non-autoregressive sequence-to-sequence (NAR-S2S) models. Inspired by the great success of NAR-S2S models such as FastSpeech in text-to-speech (TTS), we extend the FastSpeech2 model fo