ترغب بنشر مسار تعليمي؟ اضغط هنا

LSSED: a large-scale dataset and benchmark for speech emotion recognition

88   0   0.0 ( 0 )
 نشر من قبل Weiquan Fan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Speech emotion recognition is a vital contributor to the next generation of human-computer interaction (HCI). However, current existing small-scale databases have limited the development of related research. In this paper, we present LSSED, a challenging large-scale english speech emotion dataset, which has data collected from 820 subjects to simulate real-world distribution. In addition, we release some pre-trained models based on LSSED, which can not only promote the development of speech emotion recognition, but can also be transferred to related downstream tasks such as mental health analysis where data is extremely difficult to collect. Finally, our experiments show the necessity of large-scale datasets and the effectiveness of pre-trained models. The dateset will be released on https://github.com/tobefans/LSSED.

قيم البحث

اقرأ أيضاً

Recently, increasing attention has been directed to the study of the speech emotion recognition, in which global acoustic features of an utterance are mostly used to eliminate the content differences. However, the expression of speech emotion is a dy namic process, which is reflected through dynamic durations, energies, and some other prosodic information when one speaks. In this paper, a novel local dynamic pitch probability distribution feature, which is obtained by drawing the histogram, is proposed to improve the accuracy of speech emotion recognition. Compared with most of the previous works using global features, the proposed method takes advantage of the local dynamic information conveyed by the emotional speech. Several experiments on Berlin Database of Emotional Speech are conducted to verify the effectiveness of the proposed method. The experimental results demonstrate that the local dynamic information obtained with the proposed method is more effective for speech emotion recognition than the traditional global features.
We investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of it s respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionals over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.
Speech emotion recognition is a crucial problem manifesting in a multitude of applications such as human computer interaction and education. Although several advancements have been made in the recent years, especially with the advent of Deep Neural N etworks (DNN), most of the studies in the literature fail to consider the semantic information in the speech signal. In this paper, we propose a novel framework that can capture both the semantic and the paralinguistic information in the signal. In particular, our framework is comprised of a semantic feature extractor, that captures the semantic information, and a paralinguistic feature extractor, that captures the paralinguistic information. Both semantic and paraliguistic features are then combined to a unified representation using a novel attention mechanism. The unified feature vector is passed through a LSTM to capture the temporal dynamics in the signal, before the final prediction. To validate the effectiveness of our framework, we use the popular SEWA dataset of the AVEC challenge series and compare with the three winning papers. Our model provides state-of-the-art results in the valence and liking dimensions.
Generative adversarial networks (GANs) have shown potential in learning emotional attributes and generating new data samples. However, their performance is usually hindered by the unavailability of larger speech emotion recognition (SER) data. In thi s work, we propose a framework that utilises the mixup data augmentation scheme to augment the GAN in feature learning and generation. To show the effectiveness of the proposed framework, we present results for SER on (i) synthetic feature vectors, (ii) augmentation of the training data with synthetic features, (iii) encoded features in compressed representation. Our results show that the proposed framework can effectively learn compressed emotional representations as well as it can generate synthetic samples that help improve performance in within-corpus and cross-corpus evaluation.
In this manuscript, the topic of multi-corpus Speech Emotion Recognition (SER) is approached from a deep transfer learning perspective. A large corpus of emotional speech data, EmoSet, is assembled from a number of existing SER corpora. In total, Emo Set contains 84181 audio recordings from 26 SER corpora with a total duration of over 65 hours. The corpus is then utilised to create a novel framework for multi-corpus speech emotion recognition, namely EmoNet. A combination of a deep ResNet architecture and residual adapters is transferred from the field of multi-domain visual recognition to multi-corpus SER on EmoSet. Compared against two suitable baselines and more traditional training and transfer settings for the ResNet, the residual adapter approach enables parameter efficient training of a multi-domain SER model on all 26 corpora. A shared model with only $3.5$ times the number of parameters of a model trained on a single database leads to increased performance for 21 of the 26 corpora in EmoSet. Measured by McNemars test, these improvements are further significant for ten datasets at $p<0.05$ while there are just two corpora that see only significant decreases across the residual adapter transfer experiments. Finally, we make our EmoNet framework publicly available for users and developers at https://github.com/EIHW/EmoNet. EmoNet provides an extensive command line interface which is comprehensively documented and can be used in a variety of multi-corpus transfer learning settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا