ﻻ يوجد ملخص باللغة العربية
Quantum emitters respond to resonant illumination by radiating electromagnetic fields. A component of these fields is phase-coherent with the driving tone, while another one is incoherent, consisting of spontaneously emitted photons and forming the fluorescence signal. Atoms and molecules are routinely detected by their fluorescence at optical frequencies, with important applications in quantum technology and microscopy. Spins, on the other hand, are usually detected by {their coherent response} at radio- or microwave frequencies, either in continuous-wave or pulsed magnetic resonance. Indeed, fluorescence detection of spins is hampered {by their low spontaneous emission rate} and by the lack of single-photon detectors in this frequency range. Here, using superconducting quantum devices, we demonstrate the detection of a small ensemble of donor spins in silicon by their fluorescence at microwave frequency and millikelvin temperatures. We enhance the spin radiative decay rate by coupling them to a high-quality-factor and small-mode-volume superconducting resonator, and we connect the device output to a newly-developed microwave single-photon counter based on a superconducting qubit. We discuss the potential of fluorescence detection as a novel method for magnetic resonance spectroscopy of small numbers of spins.
High-fidelity, efficient quantum nondemolition readout of quantum bits is integral to the goal of quantum computation. As superconducting circuits approach the requirements of scalable, universal fault tolerance, qubit readout must also meet the dema
We report the detection and polarization of nuclear spins in diamond at room temperature by using a single nitrogen-vacancy (NV) center. We use Hartmann-Hahn double resonance to coherently enhance the signal from a single nuclear spin while decouplin
The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-phot
Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots (QDs). They constitute a promising approach to quantum information processing [1, 2], complementary to superconducting qubit
The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here we demonstrate both resonant and non-resonant photon-mediated coherent interacti