ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent microwave photon mediated coupling between a semiconductor and a superconductor qubit

80   0   0.0 ( 0 )
 نشر من قبل Pasquale Scarlino
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots (QDs). They constitute a promising approach to quantum information processing [1, 2], complementary to superconducting qubits [3]. Typically, semiconductor qubit-qubit coupling is short range [1, 2, 4, 5], effectively limiting qubit distance to the spatial extent of the wavefunction of the confined particle, which represents a significant constraint towards scaling to reach dense 1D or 2D arrays of QD qubits. Following the success of circuit quantum eletrodynamics [6], the strong coupling regime between the charge [7, 8] and spin [9, 10, 11] degrees of freedom of electrons confined in semiconducting QDs interacting with individual photons stored in a microwave resonator has recently been achieved. In this letter, we demonstrate coherent coupling between a superconducting transmon qubit and a semiconductor double quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a tunable high-impedance SQUID array resonator acting as a quantum bus [12, 13, 14]. The transmon-charge qubit coherent coupling rate ($ sim$ 21 MHz) exceeds the linewidth of both the transmon ($ sim$ 0.8 MHz) and the DQD charge ($ sim$ 3 MHz) qubit. By tuning the qubits into resonance for a controlled amount of time, we observe coherent oscillations between the constituents of this hybrid quantum system. These results enable a new class of experiments exploring the use of the two-qubit interactions mediated by microwave photons to create entangled states between semiconductor and superconducting qubits. The methods and techniques presented here are transferable to QD devices based on other material systems and can be beneficial for spin-based hybrid systems.



قيم البحث

اقرأ أيضاً

The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here we demonstrate both resonant and non-resonant photon-mediated coherent interacti ons between double quantum dot charge qubits separated by several tens of micrometers. We present clear spectroscopic evidence of the collective enhancement of the resonant coupling of two qubits. With both qubits detuned from the resonator we observe exchange coupling between the qubits mediated by virtual photons. In both instances pronounced bright and dark states governed by the symmetry of the qubit-field interaction are found. Our observations are in excellent quantitative agreement with master-equation simulations. The extracted two-qubit coupling strengths significantly exceed the linewidths of the combined resonator-qubit system. This indicates that this approach is viable for creating photon-mediated two-qubit gates in quantum dot based systems.
We demonstrate coherent tunable coupling between a superconducting phase qubit and a lumped element resonator. The coupling strength is mediated by a flux-biased RF SQUID operated in the non-hysteretic regime. By tuning the applied flux bias to the R F SQUID we change the effective mutual inductance, and thus the coupling energy, between the phase qubit and resonator . We verify the modulation of coupling strength from 0 to $100 MHz$ by observing modulation in the size of the splitting in the phase qubits spectroscopy, as well as coherently by observing modulation in the vacuum Rabi oscillation frequency when on resonance. The measured spectroscopic splittings and vacuum Rabi oscillations agree well with theoretical predictions.
188 - C. Eichler , C. Lang , J. M. Fink 2012
A localized qubit entangled with a propagating quantum field is well suited to study non-local aspects of quantum mechanics and may also provide a channel to communicate between spatially separated nodes in a quantum network. Here, we report the on d emand generation and characterization of Bell-type entangled states between a superconducting qubit and propagating microwave fields composed of zero, one and two-photon Fock states. Using low noise linear amplification and efficient data acquisition we extract all relevant correlations between the qubit and the photon states and demonstrate entanglement with high fidelity.
Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers strongly coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally-resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically-mediated interactions. Our experiments pave the way for implementation of cavity-mediated quantum gates between spin qubits and for realization of scalable quantum network nodes.
We predict the existence of a novel interaction-induced spatial localization in a periodic array of qubits coupled to a waveguide. This localization can be described as a quantum analogue of a self-induced optical lattice between two indistinguishabl e photons, where one photon creates a standing wave that traps the other photon. The localization is caused by the interplay between on-site repulsion due to the photon blockade and the waveguide-mediated long-range coupling between the qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا