ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear spectroscopy of high-spin fluctuations

84   0   0.0 ( 0 )
 نشر من قبل Ivan Ryzhov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate theoretically and experimentally fluctuations of high spin (F>1/2) beyond the linear response regime and demonstrate dramatic modifications of the spin noise spectra in the high power density probe field. Several effects related to an interplay of high spin and perturbation are predicted theoretically and revealed experimentally, including strong sensitivity of the spin noise spectra to the mutual orientation of the probe polarization plane and magnetic field direction, appearance of high harmonics of the Larmor frequency in the spin noise and the fine structure of the Larmor peaks. We demonstrate the ability of the spin-noise spectroscopy to access the nonlinear effects related to the renormalization of the spin states by strong electromagnetic fields.



قيم البحث

اقرأ أيضاً

We study an integrated silicon photonic chip, composed of several sub-wavelength ridge waveguides, and immersed in a micro-cell with rubidium vapor. Employing two-photon excitation, including a telecom wavelength, we observe that the waveguide transm ission spectrum gets modified when the photonic mode is coupled to rubidium atoms through its evanescent tail. Due to the enhanced electric field in the waveguide cladding, the atomic transition can be saturated at a photon number $approx$ 80 times less than a free-propagating beam case. The non-linearity of the atom-clad Si-waveguide is about 4 orders of magnitude larger than maximum achievable value in doped Si photonics. The measured spectra corroborate well with a generalized effective susceptibility model that includes the Casimir-Polder potentials, due to the dielectric surface, and the transient interaction between flying atoms and the evanescent waveguide mode. This work paves the way towards a miniaturized, low-power, and integrated hybrid atomic-photonic system compatible with CMOS technologies.
Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectru m, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
We study high-order harmonic generation in aligned molecules close to the ionization threshold. Two distinct contributions to the harmonic signal are observed, which show very different responses to molecular alignment and ellipticity of the driving field. We perform a classical electron trajectory analysis, taking into account the significant influence of the Coulomb potential on the strong-field-driven electron dynamics. The two contributions are related to primary ionization and excitation processes, offering a deeper understanding of the origin of high harmonics near the ionization threshold. This work shows that high harmonic spectroscopy can be extended to the near-threshold spectral range, which is in general spectroscopically rich.
102 - Hadas Soifer 2014
High-harmonics generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechan ism that leads to the harmonics generation. Recently, we have demonstrated the ability to resolve the first stage of the process -- field induced tunnel ionization -- by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study -- modifying the fundamental wavelength, intensity and atomic system -- we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems.
Collinear double-pulse seeding of the High-Gain Harmonic Generation (HGHG) process in a free-electron laser (FEL) is a promising approach to facilitate various coherent nonlinear spectroscopy schemes in the extreme ultraviolet (XUV) spectral range. H owever, in collinear arrangements using a single nonlinear medium, temporally overlapping seed pulses may introduce nonlinear mixing signals that compromise the experiment at short time delays. Here, we investigate these effects in detail by extending the analysis described in a recent publication (Wituschek et al., Nat. Commun., 11, 883, 2020). High-order fringe-resolved autocorrelation and wave-packet interferometry experiments at photon energies > $23,$eV are performed, accompanied by numerical simulations. It turns out that both the autocorrelation and the wave-packet interferometry data are very sensitive to saturation effects and can thus be used to characterize saturation in the HGHG process. Our results further imply that time-resolved spectroscopy experiments are feasible even for time delays smaller than the seed pulse duration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا