ﻻ يوجد ملخص باللغة العربية
We study high-order harmonic generation in aligned molecules close to the ionization threshold. Two distinct contributions to the harmonic signal are observed, which show very different responses to molecular alignment and ellipticity of the driving field. We perform a classical electron trajectory analysis, taking into account the significant influence of the Coulomb potential on the strong-field-driven electron dynamics. The two contributions are related to primary ionization and excitation processes, offering a deeper understanding of the origin of high harmonics near the ionization threshold. This work shows that high harmonic spectroscopy can be extended to the near-threshold spectral range, which is in general spectroscopically rich.
Electron quantum path interferences in strongly laser-driven aligned molecules and their dependence on the molecular alignment is an essential open problem in strong-field molecular physics. Here, we demonstrate an approach which provides direct acce
We present the experimental and theoretical details of our recent published letter [Phys. Rev. Lett. 115. 123002] on synchronized high-harmonic and terahertz-wave spectroscopy (HATS) from nonadiabatically aligned nitrogen molecules in dual-color lase
High-order harmonic generation is a powerful and sensitive tool for probing atomic and molecular structures, combining in the same measurement an unprecedented attosecond temporal resolution with a high spatial resolution, of the order of the angstro
We show that the dependence of high-order harmonic generation (HHG) on the molecular orientation can be understood within a theoretical treatment that does not involve the strong field of the laser. The results for H_2 show excellent agreement with t
We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained fro