ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrating two-photon nonlinear spectroscopy of rubidium atoms with silicon photonics

63   0   0.0 ( 0 )
 نشر من قبل Artur Skljarow
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an integrated silicon photonic chip, composed of several sub-wavelength ridge waveguides, and immersed in a micro-cell with rubidium vapor. Employing two-photon excitation, including a telecom wavelength, we observe that the waveguide transmission spectrum gets modified when the photonic mode is coupled to rubidium atoms through its evanescent tail. Due to the enhanced electric field in the waveguide cladding, the atomic transition can be saturated at a photon number $approx$ 80 times less than a free-propagating beam case. The non-linearity of the atom-clad Si-waveguide is about 4 orders of magnitude larger than maximum achievable value in doped Si photonics. The measured spectra corroborate well with a generalized effective susceptibility model that includes the Casimir-Polder potentials, due to the dielectric surface, and the transient interaction between flying atoms and the evanescent waveguide mode. This work paves the way towards a miniaturized, low-power, and integrated hybrid atomic-photonic system compatible with CMOS technologies.

قيم البحث

اقرأ أيضاً

We investigate the prospects of using two-mode intensity squeezed twin-beams, generated in Rb vapor, to improve the sensitivity of spectroscopic measurements by engaging two-photon Raman transitions. As a proof of principle demonstration, we demonstr ated the quantum-enhanced measurements of the Rb $5D_{3/2}$ hyperfine structure with reduced requirements for the Raman pump laser power and Rb vapor number density.
We report on an experimental test of the spin selection rule for two-photon transitions in atoms. In particular, we demonstrate that the $5S_{1/2}to 6S_{1/2}$ transition rate in a rubidium gas follows a quadratic dependency on the helicity parameter linked to the polarization of the excitation light. For excitation via a single Gaussian beam or two counterpropagating beams in a hot vapor cell, the transition rate scales as the squared degree of linear polarization. The rate reaches zero when the light is circularly polarized. In contrast, when the excitation is realized via an evanescent field near an optical nanofiber, the two-photon transition cannot be completely extinguished (theoretically, not lower than 13% of the maximum rate, under our experimental conditions) by only varying the polarization of the fiber-guided light. Our findings lead to a deeper understanding of the physics of multiphoton processes in atoms in strongly nonparaxial light.
Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectru m, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
Integrated quantum photonics, which allows for the development and implementation of chip-scale devices, is recognized as a key enabling technology on the road towards scalable quantum networking schemes. However, many state-of-the-art integrated qua ntum photonics demonstrations still require the coupling of light to external photodetectors. On-chip silicon single-photon avalanche diodes (SPADs) provide a viable solution as they can be seamlessly integrated with photonic components, and operated with high efficiencies and low dark counts at temperatures achievable with thermoelectric cooling. Moreover, they are useful in applications such as LIDAR and low-light imaging. In this paper, we report the design and simulation of silicon waveguide-based SPADs on a silicon-on-insulator platform for visible wavelengths, focusing on two device families with different doping configurations: p-n+ and p-i-n+. We calculate the photon detection efficiency (PDE) and timing jitter at an input wavelength of 640 nm by simulating the avalanche process using a 2D Monte Carlo method, as well as the dark count rate (DCR) at 243 K and 300 K. For our simulated parameters, the optimal p-i-n+ SPADs show the best device performance, with a saturated PDE of 52.4 +/- 0.6% at a reverse bias voltage of 31.5 V, full-width-half-max (FWHM) timing jitter of 10 ps, and a DCR of < 5 counts per second at 243 K.
Noise measurement is a powerful tool to investigate many phenomena from laser characterization to quantum behavior of light. In this paper, we report on intensity noise measurements obtained when a laser beam is transmitted through a large cloud of c old atoms. While this measurement could possibly investigate complex processes such as the influence of atomic motion, one is first limited by the conversion of the intrinsic laser frequency noise to intensity noise via the atomic resonance. This conversion is studied here in details. We show that, while experimental intensity noise spectra collapse onto the same curve at low Fourier frequencies, some differences appear at higher frequencies when the probe beam is detuned from the center of the resonance line. A simple model, based on a mean-field approach, which corresponds to describing the atomic cloud by a dielectric susceptibility, is sufficient to understand the main features. Using this model, the noise spectra allow extracting some quantitative informations on the laser noise as well as on the atomic sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا