ترغب بنشر مسار تعليمي؟ اضغط هنا

Study on Compressed Sensing of Action Potential

84   0   0.0 ( 0 )
 نشر من قبل Xilin Liu
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Compressive sensing (CS) is a signal processing technique that enables sub-Nyquist sampling and near lossless reconstruction of a sparse signal. The technique is particularly appealing for neural signal processing since it avoids the issues relevant to high sampling rate and large data storage. In this project, different CS reconstruction algorithms were tested on raw action potential signals recorded in our lab. Two numerical criteria were set to evaluate the performance of different CS algorithms: Compression Ratio (CR) and Signal-to-Noise Ratio (SNR). In order to do this, individual CS algorithm testing platforms for the EEG data were constructed within MATLAB scheme. The main considerations for the project were the following. 1) Feasibility of the dictionary 2) Tolerance to non-sparsity 3) Applicability of thresholding or interpolation.



قيم البحث

اقرأ أيضاً

We consider the problem of sparse signal reconstruction from noisy one-bit compressed measurements when the receiver has access to side-information (SI). We assume that compressed measurements are corrupted by additive white Gaussian noise before qua ntization and sign-flip error after quantization. A generalized approximate message passing-based method for signal reconstruction from noisy one-bit compressed measurements is proposed, which is then extended for the case where the receiver has access to a signal that aids signal reconstruction, i.e., side-information. Two different scenarios of side-information are considered-a) side-information consisting of support information only, and b) side information consisting of support and amplitude information. SI is either a noisy version of the signal or a noisy estimate of the support of the signal. We develop reconstruction algorithms from one-bit measurements using noisy SI available at the receiver. Laplacian distribution and Bernoulli distribution are used to model the two types of noises which, when applied to the signal and the support, yields the SI for the above two cases, respectively. The Expectation-Maximization algorithm is used to estimate the noise parameters using noisy one-bit compressed measurements and the SI. We show that one-bit compressed measurement-based signal reconstruction is quite sensitive to noise, and the reconstruction performance can be significantly improved by exploiting available side-information at the receiver.
FAR has improved anti-jamming performance over traditional pulse-Doppler radars under complex electromagnetic circumstances. To reconstruct the range-Doppler information in FAR, many compressed sensing (CS) methods including standard and block sparse recovery have been applied. In this paper, we study phase transitions of range-Doppler recovery in FAR using CS. In particular, we derive closed-form phase transition curves associated with block sparse recovery and complex Gaussian matrices, based on prior results of standard sparse recovery under real Gaussian matrices. We further approximate the obtained curves with elementary functions of radar and target parameters, facilitating practical applications of these curves. Our results indicate that block sparse recovery outperforms the standard counterpart when targets occupy more than one range cell, which are often referred to as extended targets. Simulations validate the availability of these curves and their approximations in FAR, which benefit the design of the radar parameters.
In a frequency division duplex (FDD) massive multiple input multiple output (MIMO) system, the channel state information (CSI) feedback causes a significant bandwidth resource occupation. In order to save the uplink bandwidth resources, a 1-bit compr essed sensing (CS)-based CSI feedback method assisted by superimposed coding (SC) is proposed. Using 1-bit CS and SC techniques, the compressed support-set information and downlink CSI (DL-CSI) are superimposed on the uplink user data sequence (UL-US) and fed back to base station (BS). Compared with the SC-based feedback, the analysis and simulation results show that the UL-USs bit error ratio (BER) and the DL-CSIs accuracy can be improved in the proposed method, without using the exclusive uplink bandwidth resources to feed DL-CSI back to BS.
We present a novel scheme allowing for 2D target localization using highly quantized 1-bit measurements from a Frequency Modulated Continuous Wave (FMCW) radar with two receiving antennas. Quantization of radar signals introduces localization artifac ts, we remove this limitation by inserting a dithering on the unquantized observations. We then adapt the projected back projection algorithm to estimate both the range and angle of targets from the dithered quantized radar observations, with provably decaying reconstruction error when the number of observations increases. Simulations are performed to highlight the accuracy of the dithered scheme in noiseless conditions when compared to the non-dithered and full 32-bit resolution under severe bit-rate reduction. Finally, measurements are performed using a radar sensor to demonstrate the effectiveness and performances of the proposed quantized dithered scheme in real conditions.
For certain sensing matrices, the Approximate Message Passing (AMP) algorithm efficiently reconstructs undersampled signals. However, in Magnetic Resonance Imaging (MRI), where Fourier coefficients of a natural image are sampled with variable density , AMP encounters convergence problems. In response we present an algorithm based on Orthogonal AMP constructed specifically for variable density partial Fourier sensing matrices. For the first time in this setting a state evolution has been observed. A practical advantage of state evolution is that Steins Unbiased Risk Estimate (SURE) can be effectively implemented, yielding an algorithm with no free parameters. We empirically evaluate the effectiveness of the parameter-free algorithm on simulated data and find that it converges over 5x faster and to a lower mean-squared error solution than Fast Iterative Shrinkage-Thresholding (FISTA).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا