ﻻ يوجد ملخص باللغة العربية
The primary challenge in solving kinetic equations, such as the Vlasov equation, is the high-dimensional phase space. In this context, dynamical low-rank approximations have emerged as a promising way to reduce the high computational cost imposed by such problems. However, a major disadvantage of this approach is that the physical structure of the underlying problem is not preserved. In this paper, we propose a dynamical low-rank algorithm that conserves mass, momentum, and energy as well as the corresponding continuity equations. We also show how this approach can be combined with a conservative time and space discretization.
Numerical methods that approximate the solution of the Vlasov-Poisson equation by a low-rank representation have been considered recently. These methods can be extremely effective from a computational point of view, but contrary to most Eulerian Vlas
It has recently been demonstrated that dynamical low-rank algorithms can provide robust and efficient approximation to a range of kinetic equations. This is true especially if the solution is close to some asymptotic limit where it is known that the
The micro-macro (mM) decomposition approach is considered for the numerical solution of the Vlasov--Poisson--Lenard--Bernstein (VPLB) system, which is relevant for plasma physics applications. In the mM approach, the kinetic distribution function is
Many problems encountered in plasma physics require a description by kinetic equations, which are posed in an up to six-dimensional phase space. A direct discretization of this phase space, often called the Eulerian approach, has many advantages but
The Vlasov--Maxwell equations are used for the kinetic description of magnetized plasmas. As they are posed in an up to 3+3 dimensional phase space, solving this problem is extremely expensive from a computational point of view. In this paper, we exp