ﻻ يوجد ملخص باللغة العربية
The micro-macro (mM) decomposition approach is considered for the numerical solution of the Vlasov--Poisson--Lenard--Bernstein (VPLB) system, which is relevant for plasma physics applications. In the mM approach, the kinetic distribution function is decomposed as $f=mathcal{E}[boldsymbol{rho}_{f}]+g$, where $mathcal{E}$ is a local equilibrium distribution, depending on the macroscopic moments $boldsymbol{rho}_{f}=int_{mathbb{R}}boldsymbol{e} fdv=langleboldsymbol{e} frangle_{mathbb{R}}$, where $boldsymbol{e}=(1,v,frac{1}{2}v^{2})^{rm{T}}$, and $g$, the microscopic distribution, is defined such that $langleboldsymbol{e} grangle_{mathbb{R}}=0$. We aim to design numerical methods for the mM decomposition of the VPLB system, which consists of coupled equations for $boldsymbol{rho}_{f}$ and $g$. To this end, we use the discontinuous Galerkin (DG) method for phase-space discretization, and implicit-explicit (IMEX) time integration, where the phase-space advection terms are integrated explicitly and the collision operator is integrated implicitly. We give special consideration to ensure that the resulting mM method maintains the $langleboldsymbol{e} grangle_{mathbb{R}}=0$ constraint, which may be necessary for obtaining (i) satisfactory results in the collision dominated regime with coarse velocity resolution, and (ii) unambiguous conservation properties. The constraint-preserving property is achieved through a consistent discretization of the equations governing the micro and macro components. We present numerical results that demonstrate the performance of the mM method. The mM method is also compared against a corresponding DG-IMEX method solving directly for $f$.
The primary challenge in solving kinetic equations, such as the Vlasov equation, is the high-dimensional phase space. In this context, dynamical low-rank approximations have emerged as a promising way to reduce the high computational cost imposed by
This work develops entropy-stable positivity-preserving DG methods as a computational scheme for Boltzmann-Poisson systems modeling the pdf of electronic transport along energy bands in semiconductor crystal lattices. We pose, using spherical or ener
In this paper, we design and analyze third order positivity-preserving discontinuous Galerkin (DG) schemes for solving the time-dependent system of Poisson--Nernst--Planck (PNP) equations, which has found much use in diverse applications. Our DG meth
In this paper, we develop a new free-stream preserving (FP) method for high-order upwind conservative finite-difference (FD) schemes on the curvilinear grids. This FP method is constrcuted by subtracting a reference cell-face flow state from each cel
For a class of fourth order gradient flow problems, integration of the scalar auxiliary variable (SAV) time discretization with the penalty-free discontinuous Galerkin (DG) spatial discretization leads to SAV-DG schemes. These schemes are linear and