ترغب بنشر مسار تعليمي؟ اضغط هنا

LiteBIRD: JAXAs new strategic L-class mission for all-sky surveys of cosmic microwave background polarization

128   0   0.0 ( 0 )
 نشر من قبل Masashi Hazumi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXAs H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 micro K-arcmin with a typical angular resolution of 0.5 deg. at 100GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.

قيم البحث

اقرأ أيضاً

LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio $r$ to an uncertainty of $delta r=0.001$. In order to achieve this goal we will employ a kilo-pixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4~K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors (MKID). In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2~$mu$K$cdot$arcmin over the frequency range 50 to 320~GHz.
3D printing presents an attractive alternative to visual representation of physical datasets such as astronomical images that can be used for research, outreach or teaching purposes, and is especially relevant to people with a visual disability. We h ere report the use of 3D printing technology to produce a representation of the all-sky Cosmic Microwave Background (CMB) intensity anisotropy maps produced by the Planck mission. The success of this work in representing key features of the CMB is discussed as is the potential of this approach for representing other astrophysical data sets. 3D printing such datasets represents a highly complementary approach to the usual 2D projections used in teaching and outreach work, and can also form the basis of undergraduate projects. The CAD files used to produce the models discussed in this paper are made available.
WFIRST is the highest priority space mission of the Decadal review, however, it is unlikely to begin in this decade primarily due to a anticipated NASA budget that is unlikely to have sufficient resources to fund such a mission. For this reason we pr esent a lower cost mission that accomplishes all of the WFIRST science as described in the Design Reference Mission 1 with a probe class design. This is effort is motivated by a desire to begin WFIRST in a timely manner and within a budget that can fit within the assets available to NASA on a realistic basis. The design utilizes dichroics to form four focal planes all having the same field of view to use the majority of available photons from a 1.2 meter telescope.
Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. Filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signa ls on the resulting maps. In this work we explicitly construct a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigate the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then study the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may have on the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focus on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR.
Mapping the polarization of the Cosmic Microwave Background is yielding exciting data on the origin of the universe, the reionization of the universe, and the growth of cosmic structure. Kilopixel arrays represent the current state of the art, but ad vances in detector technology are needed to enable the larger detector arrays needed for future measurements. Here we present a design for single-band dual-polarization Kinetic Inductance Detectors (KIDs) at 20% bandwidths centered at 145, 220, and 280 GHz. The detection and readout system is nearly identical to the successful photon-noise-limited aluminum Lumped-Element KIDs that have been recently built and tested by some of the authors. Fabricating large focal plane arrays of the feed horns and quarter-wave backshorts requires only conventional precision machining. Since the detectors and readout lines consist only of a single patterned aluminum layer on a SOI wafer, arrays of the detectors can be built commercially or at a standard university cleanroom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا