ترغب بنشر مسار تعليمي؟ اضغط هنا

WFIRST Science with a Probe Class Mission

384   0   0.0 ( 0 )
 نشر من قبل Rodger Thompson Prof.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

WFIRST is the highest priority space mission of the Decadal review, however, it is unlikely to begin in this decade primarily due to a anticipated NASA budget that is unlikely to have sufficient resources to fund such a mission. For this reason we present a lower cost mission that accomplishes all of the WFIRST science as described in the Design Reference Mission 1 with a probe class design. This is effort is motivated by a desire to begin WFIRST in a timely manner and within a budget that can fit within the assets available to NASA on a realistic basis. The design utilizes dichroics to form four focal planes all having the same field of view to use the majority of available photons from a 1.2 meter telescope.



قيم البحث

اقرأ أيضاً

The science objectives of the LISA mission have been defined under the implicit assumption of a 4 yr continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of $approx 0.75$, which woul d reduce the effective span of usable data to 3 yr. This paper reports the results of a study by the LISA Science Group, which was charged with assessing the additional science return of increasing the mission lifetime. We explore various observational scenarios to assess the impact of mission duration on the main science objectives of the mission. We find that the science investigations most affected by mission duration concern the search for seed black holes at cosmic dawn, as well as the study of stellar-origin black holes and of their formation channels via multi-band and multi-messenger observations. We conclude that an extension to 6 yr of mission operations is recommended.
127 - M. Hazumi , P.A.R. Ade , A. Adler 2021
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXAs H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 micro K-arcmin with a typical angular resolution of 0.5 deg. at 100GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
We examined the solar gravitational lens (SGL) as the means to produce direct high-resolution, multipixel images of exoplanets. The properties of the SGL are remarkable: it offers maximum light amplification of ~1e11 and angular resolution of ~1e-10 arcsec. A probe with a 1-m telescope in the SGL focal region can image an exoplanet at 30 pc with 10-kilometer resolution on its surface, sufficient to observe seasonal changes, oceans, continents, surface topography. We reached and exceeded all objectives set for our study: We developed a new wave-optical approach to study the imaging of exoplanets while treating them as extended, resolved, faint sources at large but finite distances. We properly accounted for the solar corona brightness. We developed deconvolution algorithms and demonstrated the feasibility of high-quality image reconstruction under realistic conditions. We have proven that multipixel imaging and spectroscopy of exoplanets with the SGL are feasible. We have developed a new mission concept that delivers an array of optical telescopes to the SGL focal region relying on three innovations: i) a new way to enable direct exoplanet imaging, ii) use of smallsats solar sails fast transit through the solar system and beyond, iii) an open architecture to take advantage of swarm technology. This approach enables entirely new missions, providing a great leap in capabilities for NASA and the greater aerospace community. Our results are encouraging as they lead to a realistic design for a mission that will be able to make direct resolved images of exoplanets in our stellar neighborhood. It could allow exploration of exoplanets relying on the SGL capabilities decades, if not centuries, earlier than possible with other extant technologies. The architecture and mission concepts for a mission to the strong interference region of the SGL are promising and should be explored further.
The Wide Field Infrared Survey Telescope (WFIRST) will monitor $sim 2$ deg$^2$ toward the Galactic bulge in a wide ($sim 1-2~mu$m) W149 filter at 15-minute cadence with exposure times of $sim$50s for 6 seasons of 72 days each, for a total $sim$41,000 exposures taken over $sim$432 days, spread over the 5-year prime mission. This will be one of the deepest exposures of the sky ever taken, reaching a photon-noise photometric precision of 0.01 mag per exposure and collecting a total of $sim 10^9$ photons over the course of the survey for a W149$_{rm AB}sim 21$ star. Of order $4 times 10^7$ stars will be monitored with W149$_{rm AB}$<21, and 10$^8$ stars with W145$_{rm AB}$<23. The WFIRST microlensing survey will detect $sim$54,000 microlensing events, of which roughly 1% ($sim$500) will be due to isolated black holes, and $sim$3% ($sim$1600) will be due to isolated neutron stars. It will be sensitive to (effectively) isolated compact objects with masses as low as the mass of Pluto, thereby enabling a measurement of the compact object mass function over 10 orders of magnitude. Assuming photon-noise limited precision, it will detect $sim 10^5$ transiting planets with sizes as small as $sim 2~R_oplus$, perform asteroseismology of $sim 10^6$ giant stars, measure the proper motions to $sim 0.3%$ and parallaxes to $sim 10%$ for the $sim 6 times 10^6$ disk and bulge stars in the survey area, and directly detect $sim 5 times 10^3$ Trans-Neptunian objects (TNOs) with diameters down to $sim 10$ km, as well as detect $sim 10^3$ occulations of stars by TNOs during the survey. All of this science will completely serendipitous, i.e., it will not require modifications of the WFIRST optimal microlensing survey design. Allowing for some minor deviation from the optimal design, such as monitoring the Galactic center, would enable an even broader range of transformational science.
NASAs WFIRST mission will perform a wide-field, NIR survey of the Galactic Bulge to search for exoplanets via the microlensing techniques. As the mission is due to launch in the mid-2020s, around half-way through the LSST Main Survey, we have a uniqu e opportunity to explore synergistic science from two landmark programs. LSST can survey the entire footprint of the WFIRST microlensing survey in a single Deep Drilling Field. Here we explore the great scientific potential of this proposal and recommend the most effective observing strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا