ﻻ يوجد ملخص باللغة العربية
We present a combined neutron diffraction (ND) and high-field muon spin rotation ($mu$SR) study of the magnetic and superconducting phases of the high-temperature superconductor La$_{1.94}$Sr$_{0.06}$CuO$_{4+y}$ ($T_{c} = 38$~K). We observe a linear dependence of the ND signal from the modulated antiferromagnetic order (m-AFM) on the applied field. The magnetic volume fraction measured with $mu$SR increases linearly from 0% to $sim$40% with applied magnetic field up to 8~T. This allows us to conclude, in contrast to earlier field-dependent neutron diffraction studies, that the long-range m-AFM regions are induced by an applied field, and that their ordered magnetic moment remains constant.
The resistivity as function of temperature of high temperature superconductors is very unusual and despite its importance lacks an unified theoretical explanation. It is linear with the temperature for overdoped compounds but it falls more quickly as
We present neutron scattering studies of the inter-planar correlations in the high-temperature superconductor La1.88Sr0.12CuO4 (T_c=27 K). The correlations are studied both in a magnetic field applied perpendicular to the CuO2 planes, and in zero fie
The phenomenon of phase separation into antiferromagnetic (AFM) and superconducting (SC) or normal-state regions has great implication for the origin of high-temperature (high-Tc) superconductivity. However, the occurrence of an intrinsic antiferroma
The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important is
With the discovery of charge density waves (CDW) in most members of the cuprate high temperature superconductors, the interplay between superconductivity and CDW has become a key point in the debate on the origin of high temperature superconductivity