ﻻ يوجد ملخص باللغة العربية
The resistivity as function of temperature of high temperature superconductors is very unusual and despite its importance lacks an unified theoretical explanation. It is linear with the temperature for overdoped compounds but it falls more quickly as the doping level decreases, and for weakly doped samples it has a minimum, increases like an insulator before it drops to zero at low temperatures. We show that this overall behavior can be explained by calculations using an electronic phase segregation into two main component phases with low and high densities. The total resistivity is calculated by the various contributions through several random picking processes of the local resistivities and using the Random Resistor Network approach.
We present a combined neutron diffraction (ND) and high-field muon spin rotation ($mu$SR) study of the magnetic and superconducting phases of the high-temperature superconductor La$_{1.94}$Sr$_{0.06}$CuO$_{4+y}$ ($T_{c} = 38$~K). We observe a linear
The phenomenon of phase separation into antiferromagnetic (AFM) and superconducting (SC) or normal-state regions has great implication for the origin of high-temperature (high-Tc) superconductivity. However, the occurrence of an intrinsic antiferroma
We propose that Resistivity Curvature Mapping (RCM) based on the in-plane resistivity data is a useful way to objectively draw an electronic phase diagrams of high-T_c cuprates, where various crossovers are important. In particular, the pseudogap cro
We use ionic liquid-assisted electric field effect to tune the carrier density in an electron-doped cuprate ultrathin film and cause a two-dimensional superconductor-insulator transition (SIT). The low upper critical field in this system allows us to
Structural phase separation in A$_x$Fe$_{2-y}$Se$_2$ system has been studied by different experimental techniques, however, it should be important to know how the electronic uniformity is influenced, on which length scale the electronic phases coexis