ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

163   0   0.0 ( 0 )
 نشر من قبل Rustem Khasanov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important issues which need to be resolved. In the present work, the suppression of magnetism and the occurrence of superconductivity in CrAs as a function of pressure ($p$) were studied by means of muon spin rotation. The magnetism remains bulk up to $psimeq3.5$~kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at $psimeq$7~kbar. At 3.5 kbar superconductivity abruptly appears with its maximum $T_c simeq 1.2$~K which decreases upon increasing the pressure. In the intermediate pressure region ($3.5lesssim plesssim 7$~kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature ($T_c$) and of the superfluid density ($rho_s$). A scaling of $rho_s$ with $T_c^{3.2}$ as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.



قيم البحث

اقرأ أيضاً

We report resistivity measurements of the helimagnet CrAs under pressures. The helimagnetic transition with T_N ~ 265 K at ambient pressure is completely suppressed above a critical pressure of P_c ~ 0.7 GPa, and superconductivity is observed at ~2.2 K for zero resistance, which exists in a wide pressure range extending beyond 3 GPa. Both the upper critical field H_{c2} and the coefficient A in the resistivity increase toward P_c, suggesting that the superconductivity of CrAs is mediated by electronic correlations enhanced in the vicinity of the helimagnetic phase.
We investigate the pressure and temperature dependence of the lattice dynamics of the underdoped, stoichiometric, high temperature superconductor YBa2Cu4O8 by means of Raman spectroscopy and ab initio calculations. This system undergoes a reversible pressure-induced structural phase transition around 10 GPa to a collapsed orthorhombic structure, that is well reproduced by the calculation. The coupling of the B1g-like buckling phonon mode to the electronic continuum is used to probe superconductivity. In the low pressure phase, self-energy effects through the superconducting transition renormalize this phonon, and the amplitude of this renormalization strongly increases with pressure. Whereas our calculation indicates that this modes coupling to the electronic system is only marginally affected by the structural phase transition, the aforementioned renormalization is completely suppressed in the high pressure phase, demonstrating that under hydrostatic pressures higher than 10 GPa, superconductivity in YBa2Cu4O8 is greatly weakened or obliterated.
68 - E. Civardi , M. Moroni , M. Babij 2016
$^{75}$As, $^{87}$Rb and $^{85}$Rb nuclear quadrupole resonance (NQR) and $^{87}$Rb nuclear magnetic resonance (NMR) measurements in RbFe$_2$As$_2$ iron-based superconductor are presented. We observe a marked broadening of $^{75}$As NQR spectrum belo w $T_0simeq 140$ K which is associated with the onset of a charge order in the FeAs planes. Below $T_0$ we observe a power-law decrease in $^{75}$As nuclear spin-lattice relaxation rate down to $T^*simeq 20$ K. Below that temperature the nuclei start to probe different dynamics owing to the different local electronic configurations induced by the charge order. A fraction of the nuclei probes spin dynamics associated with electrons approaching a localization while another fraction probes activated dynamics possibly associated with a pseudogap. These different trends are discussed in the light of an orbital selective behaviour expected for the electronic correlations.
We have constructed a pressure$-$temperature ($P-T$) phase diagram of $P$-induced superconductivity in EuFe$_2$As$_2$ single crystals, via resistivity ($rho$) measurements up to 3.2 GPa. As hydrostatic pressure is applied, an antiferromagnetic (AF) t ransition attributed to the FeAs layers at $T_mathrm{0}$ shifts to lower temperatures, and the corresponding resistive anomaly becomes undetectable for $P$ $ge$ 2.5 GPa. This suggests that the critical pressure $P_mathrm{c}$ where $T_mathrm{0}$ becomes zero is about 2.5 GPa. We have found that the AF order of the Eu$^{2+}$ moments survives up to 3.2 GPa without significant changes in the AF ordering temperature $T_mathrm{N}$. The superconducting (SC) ground state with a sharp transition to zero resistivity at $T_mathrm{c}$ $sim$ 30 K, indicative of bulk superconductivity, emerges in a pressure range from $P_mathrm{c}$ $sim$ 2.5 GPa to $sim$ 3.0 GPa. At pressures close to but outside the SC phase, the $rho(T)$ curve shows a partial SC transition (i.e., zero resistivity is not attained) followed by a reentrant-like hump at approximately $T_mathrm{N}$ with decreasing temperature. When nonhydrostatic pressure with a uniaxial-like strain component is applied using a solid pressure medium, the partial superconductivity is continuously observed in a wide pressure range from 1.1 GPa to 3.2 GPa.
136 - T. Cuk , D.A. Zocco , H. Eisaki 2010
We have performed several high pressure electrical resistance experiments on Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212 family of copper oxide superconductors. We find a resistive anomaly, a downturn at low temperatur e, that onsets with applied pressure in the 20-40 kbar range. Through both resistance and magnetoresistance measurements, we identify this anomaly as a signature of induced superconductivity. Resistance to higher pressures decreases Tc, giving a maximum of 10 K. The higher pressure measurements exhibit a strong sensitivity to the hydrostaticity of the pressure environment. We make comparisons to the pressure induced superconductivity now ubiquitous in the iron arsenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا