ﻻ يوجد ملخص باللغة العربية
Electronic health record (EHR) data is sparse and irregular as it is recorded at irregular time intervals, and different clinical variables are measured at each observation point. In this work, we propose a multi-view features integration learning from irregular multivariate time series data by self-attention mechanism in an imputation-free manner. Specifically, we devise a novel multi-integration attention module (MIAM) to extract complex information inherent in irregular time series data. In particular, we explicitly learn the relationships among the observed values, missing indicators, and time interval between the consecutive observations, simultaneously. The rationale behind our approach is the use of human knowledge such as what to measure and when to measure in different situations, which are indirectly represented in the data. In addition, we build an attention-based decoder as a missing value imputer that helps empower the representation learning of the inter-relations among multi-view observations for the prediction task, which operates at the training phase only. We validated the effectiveness of our method over the public MIMIC-III and PhysioNet challenge 2012 datasets by comparing with and outperforming the state-of-the-art methods for in-hospital mortality prediction.
Multivariate time series (MTS) data are becoming increasingly ubiquitous in diverse domains, e.g., IoT systems, health informatics, and 5G networks. To obtain an effective representation of MTS data, it is not only essential to consider unpredictable
Recurrent neural networks (RNNs) with continuous-time hidden states are a natural fit for modeling irregularly-sampled time series. These models, however, face difficulties when the input data possess long-term dependencies. We prove that similar to
Continuous, automated surveillance systems that incorporate machine learning models are becoming increasingly more common in healthcare environments. These models can capture temporally dependent changes across multiple patient variables and can enha
Irregularly sampled time series (ISTS) data has irregular temporal intervals between observations and different sampling rates between sequences. ISTS commonly appears in healthcare, economics, and geoscience. Especially in the medical environment, t
Prediction based on Irregularly Sampled Time Series (ISTS) is of wide concern in the real-world applications. For more accurate prediction, the methods had better grasp more data characteristics. Different from ordinary time series, ISTS is character