ﻻ يوجد ملخص باللغة العربية
Irregularly sampled time series (ISTS) data has irregular temporal intervals between observations and different sampling rates between sequences. ISTS commonly appears in healthcare, economics, and geoscience. Especially in the medical environment, the widely used Electronic Health Records (EHRs) have abundant typical irregularly sampled medical time series (ISMTS) data. Developing deep learning methods on EHRs data is critical for personalized treatment, precise diagnosis and medical management. However, it is challenging to directly use deep learning models for ISMTS data. On the one hand, ISMTS data has the intra-series and inter-series relations. Both the local and global structures should be considered. On the other hand, methods should consider the trade-off between task accuracy and model complexity and remain generality and interpretability. So far, many existing works have tried to solve the above problems and have achieved good results. In this paper, we review these deep learning methods from the perspectives of technology and task. Under the technology-driven perspective, we summarize them into two categories - missing data-based methods and raw data-based methods. Under the task-driven perspective, we also summarize them into two categories - data imputation-oriented and downstream task-oriented. For each of them, we point out their advantages and disadvantages. Moreover, we implement some representative methods and compare them on four medical datasets with two tasks. Finally, we discuss the challenges and opportunities in this area.
Recurrent neural networks (RNNs) with continuous-time hidden states are a natural fit for modeling irregularly-sampled time series. These models, however, face difficulties when the input data possess long-term dependencies. We prove that similar to
Electronic health record (EHR) data is sparse and irregular as it is recorded at irregular time intervals, and different clinical variables are measured at each observation point. In this work, we propose a multi-view features integration learning fr
Multivariate time series (MTS) data are becoming increasingly ubiquitous in diverse domains, e.g., IoT systems, health informatics, and 5G networks. To obtain an effective representation of MTS data, it is not only essential to consider unpredictable
Continuous, automated surveillance systems that incorporate machine learning models are becoming increasingly more common in healthcare environments. These models can capture temporally dependent changes across multiple patient variables and can enha
Prediction based on Irregularly Sampled Time Series (ISTS) is of wide concern in the real-world applications. For more accurate prediction, the methods had better grasp more data characteristics. Different from ordinary time series, ISTS is character