ﻻ يوجد ملخص باللغة العربية
Noethers theorem relates constants of motion to the symmetries of the system. Here we investigate a manifestation of Noethers theorem in non-Hermitian systems, where the inner product is defined differently from quantum mechanics. In this framework, a generalized symmetry which we term pseudo-chirality emerges naturally as the counterpart of symmetries defined by a commutation relation in quantum mechanics. Using this observation, we reveal previously unidentified constants of motion in non-Hermitian systems with parity-time and chiral symmetries. We further elaborate the disparate implications of pseudo-chirality induced constant of motion: It signals the pair excitation of a generalized particle and the corresponding hole but vanishes universally when the pseudo-chiral operator is anti-symmetric. This disparity, when manifested in a non-Hermitian topological lattice with the Landau gauge, depends on whether the lattice size is even or odd. We further discuss previously unidentified symmetries of this non-Hermitian topological system, and we reveal how its constant of motion due to pseudo-chirality can be used as an indicator of whether a pure chiral edge state is excited.
We demonstrate a new type of non-Hermitian phase transition in open systems far from thermal equilibrium, which takes place in coupled systems interacting with reservoirs at different temperatures. The frequency of the maximum in the spectrum of ener
We have briefly analyzed the existence of the pseudofermionic structure of multilevel pseudo-Hermitian systems with odd time-reversal and higher order involutive symmetries. We have shown that 2N-level Hamiltonians with N-order eigenvalue degeneracy
The monopole for the geometric curvature is studied for non-Hermitian systems. We find that the monopole contains not only the exceptional points but also branch cuts. As the mathematical choice of branch cut in the complex plane is rather arbitrary,
One of the simplest non-Hermitian Hamiltonians first proposed by Schwartz (1960 {it Commun. Pure Appl. Math.} tb{13} 609) which may possess a spectral singularity is analyzed from the point of view of non-Hermitian generalization of quantum mechanics
We give an elementary proof of Noethers first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.