ترغب بنشر مسار تعليمي؟ اضغط هنا

Monopoles in non-Hermitian systems

84   0   0.0 ( 0 )
 نشر من قبل Qi Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The monopole for the geometric curvature is studied for non-Hermitian systems. We find that the monopole contains not only the exceptional points but also branch cuts. As the mathematical choice of branch cut in the complex plane is rather arbitrary, the monopole changes with the branch-cut choice. Despite this branch-cut dependence, our monopole is invariant under the $GL(l,mathbb{C})$ gauge transformation that is inherent in non-Hermitian systems. Although our results are generic, they are presented in the context of a two-mode non-Hermitian Dirac model. A corresponding two-mode Hermitian system is also discussed to illustrate the essential difference between monopoles in Hermitian systems and non-Hermitian systems.



قيم البحث

اقرأ أيضاً

In part I, the formalism for the description of open quantum systems (that are embedded into a common well-defined environment) by means of a non-Hermitian Hamilton operator $ch$ is sketched. Eigenvalues and eigenfunctions are parametrically controll ed. Using a 2$times$2 model, we study the eigenfunctions of $ch$ at and near to the singular exceptional points (EPs) at which two eigenvalues coalesce and the corresponding eigenfunctions differ from one another by only a phase. In part II, we provide the results of an analytical study for the eigenvalues of three crossing states. These crossing points are of measure zero. Then we show numerical results for the influence of a nearby (third) state onto an EP. Since the wavefunctions of the two crossing states are mixed in a finite parameter range around an EP, three states of a physical system will never cross in one point. Instead, the wavefunctions of all three states are mixed in a finite parameter range in which the ranges of the influence of different EPs overlap. We may relate these results to dynamical phase transitions observed recently in different experimental studies. The states on both sides of the phase transition are non-analytically connected.
Floquet engineering, modulating quantum systems in a time periodic way, lies at the central part for realizing novel topological dynamical states. Thanks to the Floquet engineering, various new realms on experimentally simulating topological material s have emerged. Conventional Floquet engineering, however, only applies to time periodic non-dissipative Hermitian systems, and for the quantum systems in reality, non-Hermitian process with dissipation usually occurs. So far, it remains unclear how to characterize topological phases of periodically driven non-Hermitian systems via the frequency space Floquet Hamiltonian. Here, we propose the non-Floquet theory to identify different Floquet topological phases of time periodic non-Hermitian systems via the generation of Floquet band gaps in frequency space. In non-Floquet theory, the eigenstates of non-Hermitian Floquet Hamiltonian are temporally deformed to be of Wannier-Stark localization. Remarkably, we show that different choices of starting points of driving period can result to different localization behavior, which effect can reversely be utilized to design detectors of quantum phases in dissipative oscillating fields. Our protocols establish a fundamental rule for describing topological features in non-Hermitian dynamical systems and can find its applications to construct new types of Floquet topological materials.
209 - Ingrid Rotter 2007
In the Feshbach projection operator (FPO) formalism the whole function space is divided into two subspaces. One of them contains the wave functions localized in a certain finite region while the continuum of extended scattering wave functions is invo lved in the other subspace. The Hamilton operator of the whole system is Hermitian, that of the localized part is, however, non-Hermitian. This non-Hermitian Hamilton operator $H_{rm eff}$ represents the core of the FPO method in present-day studies. It gives a unified description of discrete and resonance states. Furthermore, it contains the time operator. The eigenvalues $z_lambda$ and eigenfunctions $phi_lambda$ of $H_{rm eff}$ are an important ingredient of the $S$ matrix. They are energy dependent. The phases of the $phi_lambda$ are, generally, nonrigid. Most interesting physical effects are caused by the branch points in the complex plane. On the one hand, they cause the avoided level crossings that appear as level repulsion or widths bifurcation in approaching the branch points under different conditions. On the other hand, observable values are usually enhanced and accelerated in the vicinity of the branch points. In most cases, the theory is time asymmetric. An exception are the ${cal PT}$ symmetric bound states in the continuum appearing in space symmetric systems due to the avoided level crossing phenomenon in the complex plane. In the paper, the peculiarities of the FPO method are considered and three typical phenomena are sketched: (i) the unified description of decay and scattering processes, (ii) the appearance of bound states in the continuum and (iii) the spectroscopic reordering processes characteristic of the regime with overlapping resonances.
99 - Yu-Xin Wang , A. A. Clerk 2019
Models based on non-Hermitian Hamiltonians can exhibit a range of surprising and potentially useful phenomena. Physical realizations typically involve couplings to sources of incoherent gain and loss; this is problematic in quantum settings, because of the unavoidable fluctuations associated with this dissipation. Here, we present several routes for obtaining unconditional non-Hermitian dynamics in non-dissipative quantum systems. We exploit the fact that quadratic bosonic Hamiltonians that do not conserve particle number give rise to non-Hermitian dynamical matrices. We discuss the nature of these mappings from non-Hermitian to Hermitian Hamiltonians, and explore applications to quantum sensing, entanglement dynamics and topological band theory. The systems we discuss could be realized in a variety of photonic and phononic platforms using the ubiquitous resource of parametric driving.
100 - L. Jin , Z. Song 2021
Symmetry plays fundamental role in physics and the nature of symmetry changes in non-Hermitian physics. Here the symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the rand om matrices. The even-parity symmetries impose strict constraints on the scattering coefficients: the time-reversal (C and K) symmetries protect the symmetric transmission or reflection; the pseudo-Hermiticity (Q symmetry) or the inversion (P) symmetry protects the symmetric transmission and reflection. For the inversion-combined time-reversal symmetries, the symmetric features on the transmission and reflection interchange. The odd-parity symmetries including the particle-hole symmetry, chiral symmetry, and sublattice symmetry cannot ensure the scattering to be symmetric. These guiding principles are valid for both Hermitian and non-Hermitian linear systems. Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا