ترغب بنشر مسار تعليمي؟ اضغط هنا

Hermitian Hamiltonian equivalent to a given non-Hermitian one. Manifestation of spectral singularity

145   0   0.0 ( 0 )
 نشر من قبل Boris Samsonov F
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Boris F. Samsonov




اسأل ChatGPT حول البحث

One of the simplest non-Hermitian Hamiltonians first proposed by Schwartz (1960 {it Commun. Pure Appl. Math.} tb{13} 609) which may possess a spectral singularity is analyzed from the point of view of non-Hermitian generalization of quantum mechanics. It is shown that $eta$ operator, being a second order differential operator, has supersymmetric structure. Asymptotic behavior of eigenfunctions of a Hermitian Hamiltonian equivalent to the given non-Hermitian one is found. As a result the corresponding scattering matrix and cross section are given explicitly. It is demonstrated that the possible presence of the spectral singularity in the spectrum of the non-Hermitian Hamiltonian may be detected as a resonance in the scattering cross section of its Hermitian counterpart. Nevertheless, just at the singular point the equivalent Hermitian Hamiltonian becomes undetermined.



قيم البحث

اقرأ أيضاً

Diagonalizable pseudo-Hermitian Hamiltonians with real and discrete spectra, which are superpartners of Hermitian Hamiltonians, must be $eta$-pseudo-Hermitian with Hermitian, positive-definite and non-singular $eta$ operators. We show that despite th e fact that an $eta$ operator produced by a supersymmetric transformation, corresponding to the exact supersymmetry, is singular, it can be used to find the eigenfunctions of a Hermitian operator equivalent to the given pseudo-Hermitian Hamiltonian. Once the eigenfunctions of the Hermitian operator are found the operator may be reconstructed with the help of the spectral decomposition.
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challe nging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
We compare the Ornstein-Uhlenbeck process for the Gaussian Unitary Ensemble to its non-hermitian counterpart - for the complex Ginibre ensemble. We exploit the mathematical framework based on the generalized Greens functions, which involves a new, hi dden complex variable, in comparison to the standard treatment of the resolvents. This new variable turns out to be crucial to understand the pattern of the evolution of non-hermitian systems. The new feature is the emergence of the coupling between the flow of eigenvalues and that of left/right eigenvectors. We analyze local and global equilibria for both systems. Finally, we highlight some unexpected links between both ensembles.
In this paper a geometric method based on Grassmann manifolds and matrix Riccati equations to make hermitian matrices diagonal is presented. We call it Riccati Diagonalization.
Non-Hermitian skin effect, namely that the eigenvalues and eigenstates of a non-Hermitian tight-binding Hamiltonian have significant differences under open or periodic boundary conditions, is a remarkable phenomenon of non-Hermitian systems. Inspired by the presence of the non-Hermitian skin effect, we study the evolution of wave-packets in non-Hermitian systems, which can be determined using the single-particle Greens function. Surprisingly, we find that in the thermodynamical limit, the Greens function does not depend on boundary conditions, despite the presence of skin effect. We proffer a general proof for this statement in arbitrary dimension with finite hopping range, with an explicit illustration in the non-Hermitian Su-Schrieffer-Heeger model. We also explore its applications in non-interacting open quantum systems described by the master equation, where we demonstrate that the evolution of the density matrix is independent of the boundary condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا