ﻻ يوجد ملخص باللغة العربية
Ferromagnetic quantum critical points were predicted to be prohibited in clean itinerant ferromagnetic systems, yet such a phenomenon was recently revealed in CeRh$_6$Ge$_4$, where the Curie temperature can be continuously suppressed to zero under a moderate hydrostatic pressure. Here we report the observation of quantum oscillations in CeRh$_6$Ge$_4$ from measurements using the cantilever and tunnel-diode oscillator methods in fields up to 45 T, clearly demonstrating that the ferromagnetic quantum criticality occurs in a clean system. In order to map the Fermi surface of CeRh$_6$Ge$_4$, we performed angle-dependent measurements of quantum oscillations at ambient pressure, and compared the results to density functional theory calculations. The results are consistent with the Ce 4f electrons remaining localized, and not contributing to the Fermi surface, suggesting that localized ferromagnetism is a key factor for the occurrence of a ferromagnetic quantum critical point in CeRh$_6$Ge$_4$.
CeRh$_6$Ge$_4$ is an unusual example of a stoichiometric heavy fermion ferromagnet, which can be cleanly tuned by hydrostatic pressure to a quantum critical point. In order to understand the origin of this anomalous behavior, we have characterized th
We report resistivity measurements under pressure for Kondo-lattice ferromagnet CeRh$_6$Ge$_4$, and present that a quantum ferromagnetic (FM) phase transition is easily achieved. In most clean metallic ferromagnets, a quantum critical point (QCP) at
Heavy fermion compounds exhibiting a ferromagnetic quantum critical point have attracted considerable interest. Common to two known cases, i.e., CeRh$_6$Ge$_4$ and YbNi$_4$P$_2$, is that the 4f moments reside along chains with a large inter-chain dis
Using the state-of-art dynamical mean-field theory combined with density functional theory method, we have performed systematic study on the temperature and pressure dependent electronic structure of ferromagnetic quantum critical material candidate
We present an extensive study of the ferromagnetic heavy fermion compound U$_4$Ru$_7$Ge$_6$. Measurements of electrical resistivity, specific heat and magnetic properties show that U$_4$Ru$_7$Ge$_6$ orders ferromagnetically at ambient pressure with a