ﻻ يوجد ملخص باللغة العربية
We present an extensive study of the ferromagnetic heavy fermion compound U$_4$Ru$_7$Ge$_6$. Measurements of electrical resistivity, specific heat and magnetic properties show that U$_4$Ru$_7$Ge$_6$ orders ferromagnetically at ambient pressure with a Curie temperature $T_{C} = 6.8 pm 0.3$ K. The low temperature magnetic behavior of this soft ferromagnet is dominated by the excitation of gapless spin-wave modes. Our results on the transport properties of U$_4$Ru$_7$Ge$_6$ under pressures up to $2.49$ GPa suggest that U$_4$Ru$_7$Ge$_6$ has a putative ferromagnetic quantum critical point (QCP) at $P_c approx 1.7 pm 0.02$ GPa. In the ordered phase, ferromagnetic magnons scatter the conduction electrons and give rise to a well defined power law temperature dependence in the resistivity. The coefficient of this term is related to the spin-wave stiffness and measurements of the very low temperature resistivity allow to accompany the behavior of this quantity as the the ferromagnetic QCP is approached. We find that the spin-wave stiffness decreases with increasing pressure implying that the transition to the non-magnetic Fermi liquid state is driven by the softening of the magnons. The observed quantum critical behavior of the magnetic stiffness is consistent with the influence of disorder in our system. At quantum criticality ($P = P_c approx 1.7 pm 0.02$ GPa), the resistivity shows the behavior expected for an itinerant metallic system near a ferromagnetic QCP.
CeRh$_6$Ge$_4$ is an unusual example of a stoichiometric heavy fermion ferromagnet, which can be cleanly tuned by hydrostatic pressure to a quantum critical point. In order to understand the origin of this anomalous behavior, we have characterized th
Ferromagnetic quantum critical points were predicted to be prohibited in clean itinerant ferromagnetic systems, yet such a phenomenon was recently revealed in CeRh$_6$Ge$_4$, where the Curie temperature can be continuously suppressed to zero under a
We report resistivity measurements under pressure for Kondo-lattice ferromagnet CeRh$_6$Ge$_4$, and present that a quantum ferromagnetic (FM) phase transition is easily achieved. In most clean metallic ferromagnets, a quantum critical point (QCP) at
Heavy fermion compounds exhibiting a ferromagnetic quantum critical point have attracted considerable interest. Common to two known cases, i.e., CeRh$_6$Ge$_4$ and YbNi$_4$P$_2$, is that the 4f moments reside along chains with a large inter-chain dis
Systems with embedded magnetic ions that exhibit a competition between magnetic order and disorder down to absolute zero can display unusual low temperature behaviors of the resistivity, susceptibility, and specific heat. Moreover, the dynamic respon