ﻻ يوجد ملخص باللغة العربية
Using the state-of-art dynamical mean-field theory combined with density functional theory method, we have performed systematic study on the temperature and pressure dependent electronic structure of ferromagnetic quantum critical material candidate CeRh$_6$Ge$_4$. At -3.9 GPa and -8.3 GPa, the Ce-4$f$ occupation variation, the local magnetic susceptibility, and the low-frequency electronic self-energy behaviors suggest the Ce-4$f$ electrons are in the localized state; whereas at 6.5 GPa and 13.1 GPa, these quantities indicate the Ce-4$f$ electrons are in the itinerant state. The characteristic temperatures associated with the coherent Kondo screening is gradually suppressed to 0 around 0.8 GPa upon releasing external pressure, indicative of a local quantum critical point. Interestingly, the momentum-resolved spectrum function shows that even at the localized state side, highly anisotropic $mathbf{k}$-dependent hybridization between Ce-4$f$ and conduction electrons is still present along $Gamma$-A, causing hybridization gap in between. The calculations predict 8 Fermi surface sheets at the local-moment side and 6 sheets at the Kondo coherent state. Finally, the self-energy at 0.8 GPa can be well fitted by marginal Fermi-liquid form, giving rise to a linearly temperature dependent resistivity.
The heavy fermion ferromagnet CeRh$_6$Ge$_4$ is the first example of a clean stoichiometric system where the ferromagnetic transition can be continuously suppressed by hydrostatic pressure to a quantum critical point. In order to reveal the outcome w
We report resistivity measurements under pressure for Kondo-lattice ferromagnet CeRh$_6$Ge$_4$, and present that a quantum ferromagnetic (FM) phase transition is easily achieved. In most clean metallic ferromagnets, a quantum critical point (QCP) at
Ferromagnetic quantum critical points were predicted to be prohibited in clean itinerant ferromagnetic systems, yet such a phenomenon was recently revealed in CeRh$_6$Ge$_4$, where the Curie temperature can be continuously suppressed to zero under a
Heavy fermion compounds exhibiting a ferromagnetic quantum critical point have attracted considerable interest. Common to two known cases, i.e., CeRh$_6$Ge$_4$ and YbNi$_4$P$_2$, is that the 4f moments reside along chains with a large inter-chain dis
CeRh$_6$Ge$_4$ is an unusual example of a stoichiometric heavy fermion ferromagnet, which can be cleanly tuned by hydrostatic pressure to a quantum critical point. In order to understand the origin of this anomalous behavior, we have characterized th