ﻻ يوجد ملخص باللغة العربية
Evolving 5G New Radio (NR) to support non-terrestrial networks (NTNs), particularly satellite communication networks, is under exploration in 3GPP. The movement of the spaceborne platforms in NTNs may result in large timing varying Doppler shift that differs for devices in different locations. Using orthogonal frequency-division multiple access (OFDMA) in the uplink, each device will need to apply a different frequency adjustment value to compensate for the Doppler shift. To this end, the 3GPP Release-17 work on NTNs assumes that an NTN device is equipped with a global navigation satellite system (GNSS) chipset and thereby can determine its position and calculate the needed frequency adjustment value using its position information and satellite ephemeris data. This makes GNSS support essential for the NTN operation. However, GNSS signals are weak, not ubiquitous, and susceptible to interference and spoofing. We show that devices without access to GNSS signals can utilize reference signals in more than one frequency position in an OFDM carrier to estimate the Doppler shift and thereby determine the needed frequency adjustment value for pre-compensating the Doppler shift in the uplink. We analyze the performance, elaborate on how to utilize the NR reference signals, and present simulation results. The solution can reduce the dependency of NTN operation on GNSS with reasonable complexity and performance trade-off.
We provide an overview of the 3rd generation partnership project (3GPP) work on evolving the 5G wireless technology to support non-terrestrial satellite networks. Adapting 5G to support non-terrestrial networks entails a holistic design spanning acro
Non-terrestrial networks (NTNs) traditionally had certain limited applications. However, the recent technological advancements opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs
The recent and upcoming releases of the 3rd Generation Partnership Projects 5G New Radio specifications include features that are motivated by providing connectivity services to a broad set of verticals, including the automotive, rail, and air transp
With the rapid development of railways, especially high-speed railways, there is an increasingly urgent demand for new wireless communication system for railways. Taking the mature 5G technology as an opportunity, 5G-railways (5G-R) have been widely
Mobile Edge Computing (MEC) is an emerging paradigm that provides computing, storage, and networking resources within the edge of the mobile Radio Access Network (RAN). MEC servers are deployed on generic computing platform within the RAN and allow f