ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-Mechanical Force Balance Between Multipolar Dispersion and Pauli Repulsion in Atomic van der Waals Dimers

144   0   0.0 ( 0 )
 نشر من قبل Dmitry Fedorov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure and stability of atomic and molecular systems with van der Waals (vdW) bonding are often determined by the interplay between attractive dispersion interactions and repulsive interactions caused by electron confinement. Arising due to different mechanisms --- electron correlation for dispersion and the Pauli exclusion principle for exchange-repulsion --- these interactions do not appear to have a straightforward connection. In this paper, we use a coarse-grained approach for evaluating the exchange energy for two coupled quantum Drude oscillators and investigate the mutual compensation of the attractive and repulsive forces at the equilibrium distance within the multipole expansion of the Coulomb potential. This compensation yields a compact formula relating the vdW radius of an atom to its multipole polarizabilities, $R_{rm vdW} = A_l^{,}, alpha_l^{{2}/{7(l+1)}}$, where $l$ is the multipole rank and $A_l$ is a conversion factor. Such a relation is compelling because it connects an electronic property of an isolated atom (atomic polarizability) with an equilibrium distance in a dimer composed of two closed-shell atoms. We assess the accuracy of the revealed formula for noble-gas, alkaline-earth, and alkali atoms and show that the $A_l$ can be assumed to be universal constants. Besides a seamless definition of vdW radii, the proposed relation can also be used for the efficient determination of atomic multipole polarizabilities solely based on the corresponding dipole polarizability and the vdW radius. Finally, our work provides a basis for the construction of efficient and minimally-empirical interatomic potentials by combining multipolar interatomic exchange and dispersion forces on an equal footing.

قيم البحث

اقرأ أيضاً

The atomic dipole polarizability, $alpha$, and the van der Waals (vdW) radius, $R_{rm vdW}$, are two key quantities to describe vdW interactions between atoms in molecules and materials. Until now, they have been determined independently and separate ly from each other. Here, we derive the quantum-mechanical relation $R_{rm vdW} = const. timesalpha^{1/7}$ which is markedly different from the common assumption $R_{rm vdW} propto alpha^{1/3}$ based on a classical picture of hard-sphere atoms. As shown for 72 chemical elements between hydrogen and uranium, the obtained formula can be used as a unified definition of the vdW radius solely in terms of the atomic polarizability. For vdW-bonded heteronuclear dimers consisting of atoms $A$ and $B$, the combination rule $alpha = (alpha_A + alpha_B)/2$ provides a remarkably accurate way to calculate their equilibrium interatomic distance. The revealed scaling law allows to reduce the empiricism and improve the accuracy of interatomic vdW potentials, at the same time suggesting the existence of a non-trivial relation between length and volume in quantum systems.
123 - L. P. Pitaevskii 2009
A version of the Greens functions theory of the Van der Waals forces which can be conveniently used in the presence of spatial dispersion is presented. The theory is based on the fluctuation-dissipation theorem and is valid for interacting bodies, se parated by vacuum. Objections against theories acounting for the spatial dispersion are discussed.
We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same, or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be tuned by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.
125 - Bing-Sui Lu 2017
We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically anisotropic topological insulator (TI) slabs separated by a vacuum gap in the non-retardation regime, where the optic axes of the slabs a re each perpendicular to the normal direction to the slab-gap interface and also generally differently oriented from each other. We find that in addition to the magnetoelectric coupling strength, the anisotropy can also influence the sign of the vdW force, viz., a repulsive vdW force can become attractive if the anistropy is increased sufficiently. In addition, the vdW force oscillates as a function of the angular difference between the optic axes of the TI slabs, being most repulsive/least attractive (least repulsive/most attractive) for angular differences that are integer (half-integer) multiples of $pi$. Our third finding is that the vdW torque for TI slabs is generally weaker than that for ordinary dielectric slabs. Our work provides the first instance in which the vector potential appears in a calculation of the vdW interaction for which the limit is non-retarded or static.
Dipolar relaxation happens when one or both colliding atoms flip their spins exothermically inside a magnetic ($B$) field. This work reports precise measurements of dipolar relaxation in a Bose-Einstein condensate of ground state $^{87}$Rb atoms toge ther with in-depth theoretical investigations. Previous perturbative treatments fail to explain our observations except at very small $B$-fields. By employing quantum defect theory based on analytic solutions of asymptotic van der Waals interaction $-C_6/R^6$ ($R$ being interatomic spacing), we significantly expand the applicable range of perturbative treatment. We find the $B$-dependent dipolar relaxation lineshapes are largely universal, determined by the coefficient $C_6$ and the associated $s$-wave scattering lengths $a_{rm sc}$ of the states before and after spin flips. This universality, which applies generally to other atomic species as well, implicates potential controls of dipolar relaxation and related cold chemical reactions by tuning $a_{rm sc}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا