ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-Mechanical Relation between Atomic Dipole Polarizability and the van der Waals Radius

335   0   0.0 ( 0 )
 نشر من قبل Dmitry Fedorov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The atomic dipole polarizability, $alpha$, and the van der Waals (vdW) radius, $R_{rm vdW}$, are two key quantities to describe vdW interactions between atoms in molecules and materials. Until now, they have been determined independently and separately from each other. Here, we derive the quantum-mechanical relation $R_{rm vdW} = const. timesalpha^{1/7}$ which is markedly different from the common assumption $R_{rm vdW} propto alpha^{1/3}$ based on a classical picture of hard-sphere atoms. As shown for 72 chemical elements between hydrogen and uranium, the obtained formula can be used as a unified definition of the vdW radius solely in terms of the atomic polarizability. For vdW-bonded heteronuclear dimers consisting of atoms $A$ and $B$, the combination rule $alpha = (alpha_A + alpha_B)/2$ provides a remarkably accurate way to calculate their equilibrium interatomic distance. The revealed scaling law allows to reduce the empiricism and improve the accuracy of interatomic vdW potentials, at the same time suggesting the existence of a non-trivial relation between length and volume in quantum systems.

قيم البحث

اقرأ أيضاً

The structure and stability of atomic and molecular systems with van der Waals (vdW) bonding are often determined by the interplay between attractive dispersion interactions and repulsive interactions caused by electron confinement. Arising due to di fferent mechanisms --- electron correlation for dispersion and the Pauli exclusion principle for exchange-repulsion --- these interactions do not appear to have a straightforward connection. In this paper, we use a coarse-grained approach for evaluating the exchange energy for two coupled quantum Drude oscillators and investigate the mutual compensation of the attractive and repulsive forces at the equilibrium distance within the multipole expansion of the Coulomb potential. This compensation yields a compact formula relating the vdW radius of an atom to its multipole polarizabilities, $R_{rm vdW} = A_l^{,}, alpha_l^{{2}/{7(l+1)}}$, where $l$ is the multipole rank and $A_l$ is a conversion factor. Such a relation is compelling because it connects an electronic property of an isolated atom (atomic polarizability) with an equilibrium distance in a dimer composed of two closed-shell atoms. We assess the accuracy of the revealed formula for noble-gas, alkaline-earth, and alkali atoms and show that the $A_l$ can be assumed to be universal constants. Besides a seamless definition of vdW radii, the proposed relation can also be used for the efficient determination of atomic multipole polarizabilities solely based on the corresponding dipole polarizability and the vdW radius. Finally, our work provides a basis for the construction of efficient and minimally-empirical interatomic potentials by combining multipolar interatomic exchange and dispersion forces on an equal footing.
Dipolar relaxation happens when one or both colliding atoms flip their spins exothermically inside a magnetic ($B$) field. This work reports precise measurements of dipolar relaxation in a Bose-Einstein condensate of ground state $^{87}$Rb atoms toge ther with in-depth theoretical investigations. Previous perturbative treatments fail to explain our observations except at very small $B$-fields. By employing quantum defect theory based on analytic solutions of asymptotic van der Waals interaction $-C_6/R^6$ ($R$ being interatomic spacing), we significantly expand the applicable range of perturbative treatment. We find the $B$-dependent dipolar relaxation lineshapes are largely universal, determined by the coefficient $C_6$ and the associated $s$-wave scattering lengths $a_{rm sc}$ of the states before and after spin flips. This universality, which applies generally to other atomic species as well, implicates potential controls of dipolar relaxation and related cold chemical reactions by tuning $a_{rm sc}$.
The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energ ies of characteristic modes of semilocal exchange-correlation (xc) holes. These xc holes reflect the internal functional in the framework of the vdW-DF method [Phys. Rev. B 82, 081101(2010)]. We explore the internal xc hole components, showing that they share properties with those of the generalized-gradient approximation. We use these results to illustrate the nonlocality in the vdW-DF description and analyze the vdW-DF formulation of nonlocal correlation.
The van der Waals interactions between two parallel graphitic nanowiggles (GNWs) are calculated using the coupled dipole method (CDM). The CDM is an efficient and accurate approach to determine such interactions explicitly by taking into account the discrete atomic structure. Our findings show that the van der Waals forces vary from attraction to repulsion as nanoribbons move along their lengths with respect to each other. This feature leads to a number of stable and unstable positions of the system during the movement process. These positions can be tuned by changing the length of GNW. Moreover, the influence of the thermal effect on the van der Waals interactions is also extensively investigated. This work would give good direction for both future theoretical and experimental studies.
In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of varepsilon and mu, which is a consequence of Maxwells equations. Investigating spherically symmetric media we show that this seemingly unive rsal relationship is violated for electromagnetic vacuum forces such as the generalized van der Waals and Casimir forces. The stress needs to acquire an additional anomalous pressure. The anomaly is a result of renormalization, the need to subtract infinities in the stress for getting a finite, physical force. The anomalous pressure appears in the stress in media like dark energy appears in the energy-momentum tensor in general relativity. We propose and analyse an experiment to probe the van der Waals anomaly with ultracold atoms. The experiment may not only test an unusual phenomenon of quantum forces, but also an analogue of dark energy, shedding light where nothing is known empirically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا